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Chapter 1

Executive Summary

The project entitled “4 Computational-experimental Approach to Hierarchical Modeling of Damage
and Failure in Non-uniform Composite Materials” began in February 1998. A no-cost extension
was granted to continue this project till June 30, 2001. During the period of this grant, substantial
progress has been made in advancing the state of the art in multiple scale modeling and damage
by interfacial debonding and fiber cracking in composite materials. Research has been conducted
in a few distinct areas that are delineated below. A list of publications, acknowledging this grant
is provided in chapter 2.

LInterfacial Debonding Analysis in Multiple Fiber Reinforced Composites
(Details provided in Chapter 3)

Decohesion at multiple fiber interfaces of elastic fiber reinforced composites is modeled by the
Voronoi cell finite element model (VCFEM) in this chapter. Interfacial debonding is accommo-
dated by cohesive zone models, in which normal and tangential springs tractions are expressed in
terms of interfacial separation. Model simulations are compared with results from experiments,
performed using cruciform specimens of single and multiple fiber polymer-matrix composites. An
inverse problem is solved to calibrate the cohesive zone parameters. Debonding at fiber matrix
interfaces are simulated for different architectures, volume fractions and boundary conditions, to
understand the influence of microstructural morphology and boundary conditions on the decohe-
sion process.

II. A Multi-level Computational Model for Multi-scale Damage Analysis in Composite
and Porous Materials

(Details provided in Chapter 4) =

An adaptive multi-level methodology is developed in this chapter to create a hierarchy of com-
putational sub-domains with varying resolution for multiple scale problems. It is intended to




concurrently predict evolution of variables at the structural and microstructural scales, as well
as to track the incidence and propagation of microstructural damage in composite and porous
materials. The microstructural analysis is conducted with the Voronoi cell finite element model
(VCFEM), while a conventional displacement based FEM code executes the macroscopic analysis.
The model introduces three levels in the computational domain which include macro, macro-micro
and microscopic analysis. It differentiates between non-critical and critical regions and ranges from
macroscopic computations using continuum constitutive relations to zooming in at ‘hotspots’ for
pure microscopic simulations. Coupling between the scales in regions of periodic microstructure
is accomplished through asymptotic homogenization. An adaptive process significantly increases

"the efficiency while retaining appropriate level of accuracy for each region. Numerical examples

are conducted for composite and porous materials with a variety of microscopic architectures to
demonstrate the potential of the model.

III. Experimental-Computational Investigation Of Damage Evolution In Discontinu-
ously Reinforced Aluminum Matrix Composite

(Details provided in Chapter 5)

This chapter deals with a combined experimental-computational .approach to study the evolution
of microscopic damage to cause failure in commercial SiC particle reinforced DRA’s. Determi-
nation of aspects of microstructural geometry that are most critical for damage nucleation and
evolution forms a motivation for this work. An interrupted testing technique is invoked where
the load is halted in the material instability zone, following necking but prior to fracture. Sample
microstructures in the severely necked region are microscopically examined in 3D using a serial
sectioning method. The micrographs are then stacked sequentially on a computer to reconstruct
3D microstructures. Computer simulated equivalent microstructures with elliptical or ellipsoidal
particles and cracks are constructed for enhanced efficiency, which are followed by tessellation into
meshes of 2-D and 3-D Voronoi cells. Various characterization functions of geometric parameters
are generated and sensitivity analysis is conducted to explore the influence of morphological pa-

‘rameters on damage. Micromechanical modeling of 2D micrographs are conducted with Voronoi

Cell Finite Element Method (VCFEM). Inferences on the initiation and propagation of damage are
made from the 2D simulations. Finally, the effect of size and characteristic lengths of representative
material element (RME) on the extent of damage in the model systems is investigated.
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Chapter 3

Interfacial Debonding AnalySis in
Multiple Fiber Reinforced Composites

3.1 Introduction

Affordability issues are gradually shifting design practice away from the assembly of small sub-
components towards large unitized structures. In this paradigm shift, greater emphasis is placed
on design based on analysis, rather than on laboratory tests. The micro-mechanisms of failure in
composite materials, e.g. polymer or organic matrix composites are generally known. They involve
either fiber splitting or fiber-matrix interface decohesion, followed by matrix cracking. The damage
mechanisms are sensitive to local morphological parameters like volume fraction, size, shape and
spatial distribution of reinforcements, interfacial strength and process-related defects. Fibers and
interfaces. in regions of clustering or preferential alignment, are subjected to increased local stresses
and have a greater propensity to undergo damage nucleation than those in dilute regions. A number
of failure prediction models for composite laminates are phenomenological and have been based on
empirical methods or ply level fracture mechanics. These macroscopic models are not capable of
relating the failure process to local interactions and stress concentrations. Because of limited large-
scale tests in the emerging design environment, it is critical that a robust failure analysis model
evolve from the details of the microstructure and incorporate the micromechanics of damage modes.

Analysis of damage evolution by decohesion of fiber-matrix interfaces in multiple fiber-reinforced
microstructures is the objective of the present study. The effect of weak bonding or debonded in-
terface on the mechanical properties have been studied by several investigators e.g. (4, 13, 26],
using simplified models for representing imperfect conditions through traction discontinuities. The
propagation of interfacial cracking or decohesion at fiber-matrix interfaces has been successfully
modeled by a number of researchers using the cohesive volumetric finite element methods. Among
the important contributions to the field of damage evolution by normal and tangentlal separation
are those by Needleman [22, 23, 24), Tvergaard (29. 30]. Allen et. al. (2, 18], Lissenden et. al.
(17), Geubelle et. al. [9, 15], Walter et. al. [32], among others. A majority of these studies have
used unit cell models, which assume that the material is constituted of periodic repetltlon of single




cells. Displacement based finite element analyses, with the inclusion-matrix interface represented
through traction-displacement constitutive models, are used to predict the onset and growth of
debonding . While these models provide valuable insights into the microstructural damage pro-
cesses, the simple microstructure are ineffective in addressing the interaction between fibers, effects
of clustering. alignment, relative sizes etc., that are often observed in micrographs. To overcome
this limitation, Zhong and Knauss [33] have proposed a hybrid discrete-continuum approach in
which discrete particle interactions with damage evolution are modeled, accounting for particle size
and spacing.

In this work, decohesion at multiple fiber interfaces is modeled for polymer matrix ccmpos-
ites by the Voronoi cell finite element model (VCFEM), developed by Ghosh and coworkers [34].
VCFEM has been established as an effective tool for efficient and accurate modeling of non-uniform
microstructures with heterogeneities of arbitrary shapes, sizes or dispersions with perfect interfaces
in (35, 34, 21]. In VCFEM, the computational model evolves by tessellation of the microstruc-
ture to generate a mesh of multi-sided Voronoi polygons as shown in figure 3.1. The Voronoi cell
formulation is augmented in this work to incorporate interfacial debonding through the introduc-
tion of cohesive zone models. This is accomplished by permitting the elastic matrix and inclusion
phases to be connected at nodes by normal and tangential cohesive springs. The debonding pro-
cess is assumed to be quasi-static, neglecting inertia. The analysis is assumed to be in-plane and
post-debonding friction is neglected in this study. Simulations with the model are compared with
results from experiments performed using single and multiple fiber cruciform specimens. An inverse
problem is solved, using minimization techniques to calibrate cohesive zone parameters for compar-
ison studies. Finally, debonding at multi-fiber interfaces are simulated for different architectures,
volume fractions and boundary conditions to understand their effect on decohesion.

3.2 Interfacial Debonding with the Voronoi Cell FEM

The Voronoi cell finite element model (VCFEM) for a heterogeneous domain with a dispersion
of inclusions or voids, implements a mesh of Voronoi polytopes. The Voronoi cells, surrounding
each heterogeneity, are generated by a surface based tessellation algorithm [11, 14] to yield: mul-
tiple edges depending on the number of neighboring heterogeneities. Each element in VCFEM
consists of the heterogeneity and its neighborhood region of matrix. No further refinement of the
element is required with this formulation. VCFEM has been successfully developed by Ghosh
et. al. [35. 34, 21] for accurate stress and deformation analysis of elastic and plastic materials
with perfect interfaces. It uses an assumed stress hybrid finite element formulation [35, 21] with
specially developed equilibriated stress fields consistent with micromechanics. VCFEM is able to
significantly enhance computing efficiency for complex microstructures compared to conventional
displacement based FEM packages. Large regions of the microstructure are thereby easily modeled
by this method. A brief account of the extension of VCFEM to accommodate the®mclusion-matrix
interfacial debonding is presented next.

Consider a typical multiphase domain or representative volume element {2 consisting of N in-




clusions (see figure 3.1a), each contained in a Voronoi cell element ., as shown in figure 3.1b.
The matrix and the inclusion or reinforcement phases in each element are denoted by {m and ¢
respectively, i.e. Q¢ = Qm Q.. Each element boundary 09, is assumed to be comprised of the
prescribed traction and displacement boundaries I'im and Ty, respectively, and the inter-element
boundary 'm, i.e. 0 = FemUTumUTm. For allowing decohesion of the matrix-inclusion inter-
face, an incompatible displacement field is facilitated across the interface through a set of connected
node-pairs. The nodes in each pair belong to the matrix and inclusion boundaries 0QT and 091,
respectively. 89 has an outward normal n° (=n™), while n® is the outward normal to 9. It
~should be noted that the interfacial zone has zero thickness prior to deformation, but the nodes
may separate with progression of deformation and onset of decohesion.

An incremental VCFEM formulation accommodates evolving interfacial damage with chang-
ing applied loads, deformation and stress fields. Let o™ and o¢ be the equilibriated stress fields
and €™ and € the corresponding strain fields in the matrix and inclusion phases of each Voronoi
element respectively. The prefix A corresponds to increments. Furthermore, let u, u™ and u®
denote kinematically admissible displacement fields on 8Q, 9Q7 and 9 respectively. A comple-
mentary energy functional may be expressed for each element in terms of increments of stress and
boundary/interface displacement fields as:

L(o.A0.u,0u) = - [ AB(e™ Ac™) d2 - [ AB(o, 00°) dO -/ €m : Aa™ dD
Qm Qe Qm

—/ € : Ao dQ+/ (0™ + Ag™) -0t - (u™ + Au™) dQ — [ (E+ A - (u™ + Au™) dT
e Cem

[of

-/ (6™ + Ag™) - - (u™ + Au™) dOR + /a (0° + Ac%) -0 - (u + Au®) dOR
anm Q¢

(uP+Aul—uf -ALug)
- / / Trd(u™ - ul) dog
a0g, /90g J(

ul—ug)

(uP+Auf ~uf —Duf)
- / / Trd(ul - uf) dog (3.1)
a0, /095 J( . |

up" —ug)

where B is the complementary energy density and the superscripts m and c correspond to variables
associated with the matrix and inclusion phases. The different terms in the right hand side of
equation (4.21) are included to provide weak forms of essential governing equations of the problem.
The fifth term corresponds to inter-element traction reciprocity while the sixth term accounts for
the boundary traction. The last two terms provide the work done by the interfacial tractions
T™ = T™n™ + T/™t™ due to interfacial separation (u™ — u). where T, and T} are the normal and
tangential components. The traction on the matrix interface 09, is related to the stresses and

interface normals as
T"=¢™.-n"=-0™ n°=-0°-n° = (3.2)

The interfacial response is described by constitutive relations that prescribe the dependence of
normal and tangential tractions on components of interfacial separation. The total energy for the




entire heterogeneous domain is obtained by adding the energy functionals for N elements
N
n=> 1 (3.3)
e=1 .

Equating the variation of Il in equation (4.21) with respect to stress increments Ac™ and Ac®
to zero. yields the element displacement compatibility relations in each of the phases Qm, and Q..
Furthermore, setting the variation of I in equation (3.3) with respect to the independent boundary
displacements Au, Au™ and Au€ to zero, yield the traction reciprocity conditions on the interele-
ment boundaries {I',) and traction boundaries (T¢m), and fiber-matrix interfaces, 0§2* and o0

respectively.

Independent assumptions on stress increments Ao are made in the matrix and reinforcement
phases to accommodate stress jumps across the interface. In two-dimensional analysis, the Airy’s
stress function ®(z,y) is used as a convenient tool for deriving equilibriated stress increments. An
essential micromechanics observation, that interfacial stress concentrations depend on the shape of
the inclusion, has been incorporated in the choice of stress functions, by Moorthy and Ghosh [34]

through the decomposition of the matrix stress functions into (a) a purely polynomial function ®7¢;,
and (b) a reciprocal function ®7}, (@™ = &5, + B7e.). The inclusion stress functions are admitted

as polynomial function €7, (P€ = go,y). The pure polynomial function €5, accommodates the

far field stress in the matrix and inclusion and are written as: .

My =3 2Py ARy and  @py, =) 2Py DBy, (3.4)
p.q p\q

The reciprocal stress function 7. in the matrix facilitates stress concentration at the interface
accounting for inclusion shape and decays at large distances from the interface.

i 1 OBpyy DB
& = ;xpyqz; _fp+q+i—1A ;Zz = Z Pyt fr+a * frHa+l +- (3.5)
1= -

rq

The function f(z.y) is a specially mapped radial coordinate that has the properties

— 0 as (r,y) = (3.6)

1
flz,y)=10n 0Q and
‘ flz.y)
For 2D elliptical heterogeneities, f(z,y) can be constructed by conformal mapping while for 3D,
ellipsoidal coordinates can be chosen to represent this function. Stress increments in the matrix
and inclusion phases of the Voronoi cell elements may be obtained by differentiating the stress
functions with respsect to z and y, to yield expressions of the form:

AO’;’; :-\-’75':
Aoy ¢ = [P™{A&B™} and Lo, by = [PUHLBY (3.7)
JAN-gis Lag,




where [P™] and [P€] are the stress interpoltation matrices in the matrix and inclusion. The bound-
ary displacements are generated by interpolation in terms of nodal displacements on 9Q,. 97" and
8¢ using conventional linear or quadratic shape functions.

{Ou} = [L){Aq} on 8Q., {Au™}=[LNAQT} on Q" and {Au°} = [L{Aq°} on 9Q3.8)

" where {Aq}. {4q™} and {Aq°} are the generalized nodal displacement vectors. The stress and
displacement interpolations are substituted in equations 4.21 and 3.3. Subsequently stationarity
conditions of these equations are evaluated with respect to the stress parameters AB™ and ABC, and
displacement parameters {Aq}, {Aq™} and {AQ°} to yield the stress and displacement solutions
in each element. The details of VCFEM formulation and solution methodology are presented in
135. 34] and is not repeated here.

3.2.1 Cohesive Zone Models for Interfacial Decohesion

Modeling the decohesion of matrix-reinforcement interfaces is conveniently accomplished using
crack initiation and propagation criteria based on the evaluation of traditional fracture mechanics
parameters K and J. An alternative approach has been pioneered by Dugdale (8], Barenblatt (3],
Rice {27] and others to avoid crack initiation and growth conditions. This approach uses cohe-
sive zone interfacial models to depict fracture as a phenomenon of progressive separation across an
extended crack tip or cohesive zone, that is resisted by cohesive tractions. Traction across the inter-
face reaches a maximum, subsequently decreases and eventually vanishes with increasing interfacial
separation. signaling complete decohesion. Dimensional considerations introduce a characteristic
length in these models. The interface mechanical response is specified in terms of critical interfacial
strength and work of separation per unit area and no additional failure criteria are required. -A
number of cohesive zone models have been developed to characterize interfacial decohesion at the
continuum scale. Needleman (22, 23, 24] has proposed a potential based framework to describe
debonding initiation through complete separation in the cohesive zone. A similar potential based
model has also been developed by Tvergaard [29, 30]. Cohesive zone models utilizing nonlinear
spring models to depict the interfacial failure process have been proposed by Knauss and coworkers
131. 33]. Geubelle et. al. [9, 15]. From thermodynamic considerations, Costanzo and Allen [6, 7]
have postulated rate dependent cohesive zone models with internal state variables to represent mi-
croscopic dissipation mechanisms. Ortiz et al. [5, 25] have developed a class of irreversible cohesive
laws from potential or free energy functions for tracking dynamically growing cracks.

In this work the rate-independent cohesive zone modcls of Needleman [22, 23, 24] and Geubelle
et. al. [9. 15] are incorporated in the Voronoi cell FEM to model initiation and progressive debond-
ing of matrix-inclusion interfaces in composites. The loading portion of the interfacial decohesion
is manifested by these laws. In Needleman's model. the normal and tangential components of inter-
facial traction are derived from a potential, that is expressed in terms of polynomi#l or exponential
functions of displacement jumps or separation across the interface. The potential using polynomial




(cubic) functions is expressed in the form:
27 1 fun)\? 4 (uy, 1 /un\2] 1 [u\? Un Up )2
Hlun,ut) = Z'Umazé {5 (F) I:l 3 (g:) + 3 (6_') ] + ECI (5—‘> 1-2 (3’:) + (g)
Yu, <68 (3.9)

where u, and u; are the normal and tangential components of displacement jump at the interface.
The cohesive zone parameters are Omqz, the maximum traction carried by the interface undergoing
a purely normal separation i.e. uy = 0, 6*, a characteristic length and a, the ratio of interface shear
to normal stiffness of the interface. The tractions are obtained by dirterentiating the potential as

et o) oo ()« (3] o () () oo

0 27 ug (un> (un>2
T, = ——=—-—— — 1-2( — —_
‘ Bu, 4”*“’“’(5*)[ =) \F)
For u, > 6*, the traction components T, and T} are zero in this model. In an alternative form, the
potential is expressed using exponential functions of the separation as:

9 . u 1 u 2 —z(Y
d(un, ue) = Eomazé x{l-|1+z2 <5—f) - §az2 (6—f> ] e (?”} (3.11)
where z = 1—89. Thus the interfacial traction components are
_ 3¢> _ Un 1 2 uc)2 —z(%&h) -
T, = “Hu = Omaze{z (6‘) 50z (5‘ e (3.12)
8 U —z{®
T, = —52% = —Omaze{Qz (%) }e (3%)

Coupling between normal and tangential components is achieved through the functions of u, and u;.

The cohesive failure model by Geubelle et. al. [9. 15] incorporates a bilinear form of the
traction-displacement jump relation for mode mixity of applied tractions. The traction-separation

law is expressed as

N ford < dmaz
n Imaz 128 5 for § >4
6 1_om°: n max
a ug N N
T - ﬁgf;;ét for 6 < dmaz (3.13)
£ g 1=6 Y35 ford > 6 = '
T T Fmar u Ot maz

where u,, and u, are the normal and tangential components of interfacial displacement jump and
6n, 6; and & are the corresponding non-dimensional variables, defined as
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& = % bo= 2 5= /62 +62 (3.14)
t

The parameters u, and u are critical values of normal and tangential separation. for which complete
debonding is assumed to occur. The parameter 0maz corresponds to the maximum value of normal
traction T, for a normal displacement jump of up = dmqzuy. The maximum absolute value of |T}|

. < . . . -
1S Tmar = Omaz -2 which occurs at |u;| = L60zuf . Since the work of separation per unit area on
” 2 t P

t - .
the interface in the normal and tangential directions, are expressed as

', = %amaxuﬁ, and [ = —;—Tmﬂuf (3.15)
The maximum tangential traction expression implies that I'; = I'y, or that the critical energy re-
lease rates are the same for mode I and mode II. This constraint, in a sense, creates an equivalence
between the potential based models and the non-linear spring relations. Parameters in both classes
of models may be adjusted, so that they possess the same essential features, e.g. the fracture
energy or the area under the cohesive law, the peak cohesive traction etc.. The parameters ug, uf
or §* typically introduce a characteristic length of the material microstructure. A major difference
between the two models is that the Geubelle’s model admits a jump in the slope of the traction-
displacement curve, while the Needleman's polynomial and exponential models have continuous

slopes.

Both of these laws are reversible i.e., they retrace the traction-displacement curve upon unload-
ing. It has been argued (see Ortiz et. al. [25, 5]) that the decohesion process is expected to exhibit
some irreversibility. Following their models, irreversibility is incorporated in the present work by
allowing the cohesive surfaces to linearly unload to and reload from the origin.

3.2.2 Implementation of Cohesive Zone Models in VCFEM

For implementing the interfacial constitutive relations in VCFEM, the last two terms in equaiion
1.21 are replaced with traction-separation relations of the cohesive zone model. For Needleman’s
models this takes the form '

Un+QDUn ur+Du
- / / T du, 69 — / T du, doQ
ang, /008 Jun , a0, /80¢ Ju,

= /BQ o0l Bt Ba) = olun )00 (3.16)

where the potentials ¢(uy,u;) are stated in equations (3.9.3.11). For Geubelle's model the work of
separation becomes =

Un+AQun
- / / Trdu, doQ
o0, /99< Jun
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up+Due
- / / T du, o9
a0e, /09¢ Ju,

1 Omazul . . .
= (1-9) S2mezln (5 + D5)7 + (6 + £8,)) dOR +
a0s, /anc 2 dmaz
g ’U.
¥ / Imaztn 1 52 (5. + N6a)2 + /02 + (8 + DG,)? 3.17
8Q° /908 1- 6mar \/ \[ : t ( )

5 ((5n + 08)2 + (6 + £6)?)] dOQ

where V¥ is a step function defined as

U= 0 for 6 < dmaz
1 for & > dmaz

The normal and tangential separation at the interface may be expressed in terms of the nodal
displacements using the interpolated forms of equation 4.22 as:

un = up —uy = {0} [LY{q" - q°}
w= ol —uf = {t}T[LNq" - q°} (3.18)

Here {n¢} and {t¢} are arrays containing direction cosines of unit outward normal and unit tangent
vectors to the interface. The resulting weak forms of the element kinematic relations and traction
reciprocity conditions are nonlinear due to the nonlinear traction-displacement relation in the cohe-
sive zone models. A Newton-Raphson method iteration method is consequently employed to solve
for the stresses and displacements. In the event of unloading in an increment due to reduction-of
interfacial separation (crack closure), an unloading algorithm to approach the origin, is activated.

3.3 Numerical Examples

The numerical examples are divided into three categories. In the first example; VCFEM results
with the cohesive zone model are compared with results in Needleman [22]. The second set of
examples is aimed at the evaluation of cohesive parameters by comparison of VCFEM simulations
with experimental results and further validation. In the final set, VCFEM simulations are used
to make predictions of damage and overall mechanical behavior for fiber reinforced composite
microstructures with different morphologies. The stress functions in the inclusion phase of each
Voronoi Cell element is generated using 33 terms (7-th order polynomial stress function, i.e. p+q =
2..7) for the polynomial function in equation (3.4). The matrix stress function has an additional 36
reciprocal terms due to the reciprocal terms in equation 3.5 (3 reciprocal terms for each polynomial
exponent from 2 to 4, ie. i = p+q.p+qg+2VYp+q € [2.4]. Dlsplacement fields on the
.element boundary and on the matrxx and inclusion parts of the interface are represented using linear
interpolations [L¢] and [L¢] in equation (4.22). The number of node-pairs on the interface is set to
16. This is consistent with the requirements of stability and rank sufficiency of the assumed stress
hybrid FEM, as discussed in [34, 21]. The initial locations of interfacial nodes, prior to debonding,
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are determined by an adaptation procedure that is detailed in [21]. In this process, nodes are added
or positioned to minimize the error in inter-element and interfacial traction continuity. It results
in optimization of the virtual work with respect to traction discontinuity across boundaries. The
node-pairs are moved in the direction of the debond once debonding sets in. to accurately capture
the crack tip stress concentration.

3.3.1 Comparison with results of Needleman [22]

In [22], the cohesive zone model of equations (3.11) has been used for simulating debonding of
an elastic-plastic matrix from rigid spherical reinforcements. The reinforcements of 1.04% volume
fraction are arranged in a cylindrical periodic array. Consequently, an axisymmetric analysis of a
square unit cell with periodic boundary conditions is conducted. In Needleman's analysis [22], the
matrix is modeled as rate dependent elastic-viscoplastic material with isotropic hardening, with
the effective plastic strain rate € being expressed in terms of the effective stress & as
- 4L .

E=¢ [—"—} T 9@ = ool +Ee)Y L == (3.19)

PTG 9
where m and N are the strain rate hardening and strain hardening exponents and oy is a reference
strength. The matrix material properties are assumed to be E,, = 5000¢, vm = 0.3 and o =
400M Pa. The current version of VCFEM formulation can only support rate independent plastic-
ity. It is deemed that the small value of the exponent (m = 0.01) in [22] would agree (at least
qualitatively) with the VCFEM results using rate independent plasticity (m = 0). The inclusion is
modeled as elastic with very high stiffness. The cohesive zone parameters in equations (3.11) are
taken as omar = 300, 6/To = 0.01, and @ = 10.0. The stress triaxiality parameter p, is set to 0.5.
The VCFEM model consists of a single element with periodic boundary conditions imposed as

iy =0, Ty, =0, on =0 u;=Uz =éxby. Ty=0, on z=Rp

uy = Uy, T, =0, on y= Ry (3.20)

Here. u; and uy, and T, and Ty are the velocities and traction rates, in the radial and axial
directions respectively. The macroscopic effective stress &, = [ — Z,| is plotted as a function
of the axial strain e, = In(l + Uz/bg) in figure 3.2. The onset of debonding is signaled by the
sudden drop in stress level and its arrest is indicated by the resumption of monotonic increase of
flow stress. The results of VCFEM simulation agree rather well with those in [22]. The slightly
higher stress values can be attributed to the small deformation rate independent plasticity with
exponent m = 0 in VCFEM formulation.

3.3.2 An Experimental-Computational Study

Prior to predicting the interfacial debonding phenomena for multiple-fiber reinfoﬁr'ced composites
with the computational model, limited comparisons with experiments are conducted with model
composite systems with two objectives. The first is to ascertain the material parameters in the
cohesive zone model, viz. Omez, 0° and « in Needleman's models {24] and Omaz, Imazs Uz and
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u¢ in Geubelle's model [15]. The parameters are evaluated by solving inverse problems in which
the difference between critical experimental observations and results of VCFEM simulations are
minimized. The second objective is to validate the predictions of VCFEM against experimental
observations for composites with different microscopic architectures.

The experimental procedure

The debonding experiments are conducted with model single and multiple fiber specimens in the
form of a cruciform as shown in figure 3.3a: The cruciform shape has been developed in [12. 19, 28]
to avoid the development of stress singulariiy at the intersection of fiber-matrix interface and free
surface. with conventional uniform width specimens. Such stress singularities promote interfacial
separation near the free surface and results in invalid interface strength data. The most significant
advantage of the cruciform geometry is that it forces debond failure to initiate in the central region
of the specimen.

The model composite specimens are fabricated by casting in a cruciform-shaped silicone rubber
mold to specimen dimensions shown in figure 3.3 and table 1. The circular fillets at the cross
junctions reduce stress concentration in the matrix at these locations. The reinforcing fibers in
the composite system are stainless steel filaments. The fibers of predetermined length are posi-
tioned in the mold and the matrix material is cast around them. Larger diameters are helpful
in detecting the debond initiation process and are chosen for the single fiber cruciforms. The
matrix is an epoxy resin (Epon 828 manufactured by Shell Chemical Co.), that is cured with a
polyetheramine (Jeffamine D-230 manufactured by Texaco Inc.) for 3 days at ambient temperature.

Room-temperature curing reduces residual thermal stresses in the matrix, due to mismatch in
the fiber and matrix thermal properties, to a minimum: The epoxy matrix is transparent and al-
lows visualization of the debonding process at the fiber-matrix interface. Preliminary experiments
with no interfacial coating, indicate that the bond strength is high and interface failure progresses
rapidly to cause immediate catastrophic rupture. Consequently, the steel filaments are cleaned and
polished with acetone and coated with a very thin film of freekote (< 0.1 pum) prior to casting
the specimens. The freekote imparts a weak strength to the steel-epoxy interface. This allows a
somewhat stable growth of the debond crack, thereby permitting determination of the parameters
in interfacial cohesive zone models.

In the experimental set up, three strain gages (A, B and C) are affixed on faces of the specimen
as shown in figure 3.3a. Two gages (A and B) are located in the central portion of the cruciform in
vicinity of potential debond sites. Thus their readings are assumed to correspond to the debonding

strains in the specimen. The third gage C is mounted on the limb, away from the fibers and
represents the far-field strain. Furthermore, to prevent specimen failure in the grip region, fiber-
glass/epoxy end tabs are adhesive bonded on the upright portion of the specimex;' Four different
microstructural architectures are considered for the experiments. They are:

e Specimen # 1 containing a single circular fiber.
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e Specimen # 2 containing a single elliptical fiber with major axis along the loading direction

(amaj = 00)1

o Specimen # 3 containing a single elliptical fiber with major axis perpendicular to the loading
direction (amqej = 907),

e Specimen # 4 containing 5 identical circular fibers.

These are schematically illustrated in figure 3.3 and the geometric details on location, size etc.
are given in table 1. The area fraction in the table ‘are for the cross-section at the outer edge.
The elastic material properties for the reinforcing steel fibers ard epoxy matrix are experimentally
determined as: :

Young's modulus Eser = 210 GPa, Poisson's ratio vgee = 0.3; Young’s modulus Eepory = 4.6
GPa, Poisson’s ratio Vepozry = 0.4.

The cohesive properties of the debonding material are evaluated by solving the inverse problem
mentioned in section 3.3.2.

The model specimens are loaded in tension on a servo-hydraulic testing machine. The readings
from the strain gages are recorded continuously and the onset of fiber-matrix debonding is inter-
preted from a sharp change in the slope of the stress-strain curve based on gage readings at the
cruciform center. Acoustic emission sensors are also employed to confirm the onset of debonding.
In figure 3.5, the abrupt change in slope at B corresponds to debond initiation, and the relatively
flat portion BC corresponds to the strain jump. Subsequent loading (CD) proceed with a lower
stress-strain slope, due to a reduced load caring capability of the partially debonded fiber. Un-
loading along DA and subsequent reloading along ACD indicate no further change in slope, i.e.
no additional debonding. Matrix cracks always initiate at the fiber-matrix debond site and grow
rapidly to cause specimen failure. A few specimens are not loaded to fracture, to allow observation
of the partially debonded interface.

Following interface failure, some of the cruciform specimens are sectioned along the center,
parallel to the loading direction. A drop of a fluorescent dye penetrant is positioned above the
sectioned fiber and vacuum infiltration is used to force the penetrant into the debonded interface.
The sectioned face is then polished to remove traces of the dye from the original drop. Thereby, only
the dye that has penetrated along the interface crack will remain. The fiber is then viewed under
an ultraviolet light, which cause the regions containing the dye to remain bright in an otherwise
dark background. Figure 3.4a shows the debond under oblique incidence, where the fiber surface
is visible through the transparent matrix. The bright regions correspond to locations of debond
and they are concentrated on the fiber surface in the direction of the loading axis. Also, note that
they are generally absent in the wing region, which experience significantly lower loads than the
cruciform center. Figure 3.4b shows the cross section of the fiber at a higher magnification, and
the debonded region is the thin bright strip along the fiber periphery. The ends of the debond are
highlighted by the arrows, and the loading direction is horizontal in the figure. Figure 3.4b also
shows that the total angle of debonding was approximately 85°.

15




Evaluation of a Conversion Factor for Stress 3-D to 2D Stresses

The experimental results are compared with results of simulations by a 2-D (plane strain) Voronoi
cell finite element model for validation and damage prediction. While the fiber-reinforced cruciform
specimen represents a 3-D problem in actuality, the stresses and displacements at the center of the
cruciform can be well approximated by two 2-D solutions for a reasonably slender geometry. Prior
to comparison of the results, a conversion factor is established for predicting the 3-D stress state
from 2-D simulations. A full 3-D analysis of the cruciform specimen and a plane strain analysis
of the section containing a single circular fiber are conducted using the commercial finite ¢lement
package ANSYS. Perfect interface with no debonding is assumed in these analyses. Figure 3.6
shows comparison of the radial stress orr and tangential stress o, along the interface for the two
analyses. A stress concentration factor is defined as the ratio of the maximum radial stress along
the tensile axis at the pole of the fiber-matrix interface (angle=0 in the figure) to the far-field
stress. This factor is computed to be kop = 1.349 for 2D analysis and k3p = 1.139 for 3-D. By
multiplying the plane strain results with a factor k& = %g' = 0.844 enables a very good match with
the 3-D solution. as shown in the stress plots of figure 3.6. Consequently, the 2-D stresses from
VCFEM analysis are multiplied by the factor k = 0.844 for comparison with 3-D experimental
results. The 2-D sections analyzed, corresponds to rectangular vertical sections through the center
of the cruciform specimen, shown in figure 3.3a. The sections have dimensions of 33 mm x y. with
the fiber cross-sections in the central region, and where y, is given in table 1. A total of (n + 2)
Voronoi cell elements, where n correspond to the fibers and two additional elements for the limb
portions, are used to perform this 2-D analysis.

Evaluation of cohesive zone parameters

Cohesive zone parameters for the models proposed by Needleman (22, 23] and Geubelle et. al.
[9. 15] are calibrated by solving an inverse problem using the VCFE model and comparing with
experimental results. The computational model analyzes the 2-D cross-sections shown in figure
3.3b under plane strain conditions and loaded axially. In Geubelle’s model, the parameters to be
determined are dmaz, Omaz, u$ and ul, while in Needleman's model the parameters are omaz, 8* and
. Their evaluation for a given bonding material (freekote in this problem) follows a multi variable
optimization process, in which, four key variables are chosen for minimizing the differencc between
experimental and computational results. These effective values are marked in figure 3.5 and are:
(i) the strain at which debonding initiates (S;), (ii) the strain (Sy/) at which debonding arrests,
(iii) the stress (Syy7) at which debonding arrests, and (iv) post debonding slope of the stress-strain
plot (Sy1-). The major steps in this evaluation process are:

1. For each of the models in equations 3.11, 3.13 and 3.13. the overall stress-strain response with
debonding behavior is first determined (similar to figure 3.5) for a range of candidate values of
cohesive parameters. These parameters are chosen from an estimated range of possible values.
For each set of parameters, €.g8. (dmazs Omaz, Uf. Up) OF (0maz, 6* and 8*), an independent
VCFEM simulation of the microstructure with debonding in simple tension, is performed.

2. The key variables S;(i = I...IV) are represented as polynomial functions of the cohesive zone
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parameters. This produces continuous functions for gradient based optimization methods,
necessary in parameter evaluation. For Geubelle’s model (15, 9], these are written as

Si = (aio + @i10maz + 6i26%az + ) + (bio + bi1Omaz + bin02ap + .)
+ (oo +caul + couf? + ) + (dio + duul + digul” + ) (3.21)

while for Needleman's model [22, 23], these are

S; = (@io + i1 0maz + 01200z + ) + (big + bi16" + bi28"> +..) + (cio + cunx + cin@® + .(B22)

To evaluate the coefficients of the polynomial expansions i.e. aig, @41, ..., big, bi1, -y Ci0s Cily -
dio.dy1, ..., approximately 150 VCFEM simulations are conducted with different parameter

sets. For each simulation with a set of values e.g. (Smazs Omaz, u§, uS) OF (Omaz, ° and
"), the computed values of S;,i = I..IV are recorded from the stress-strain plots. The
minimum number of simulations correspond to the total number of unknown coefficients.
However, a higher number is performed in this study to accommodate a larger range of
cohesive parameters.

The coefficients aig, @i1, ..., Digsbil, -y Ci0,Cils -y dio,di1,... are evaluated by a least square
based minimization process using MATLAB. This enables explicit construction of the func-

tions S;,1 = I..IV.

The parameters of cohesive zone models in Geubelle and Needleman are finally obtained by
minimizing the difference between experimental and simulated values of the key variables S;
in the stress-strain plots of figure 3.5 or 3.10. A multi-parameter optimization problem is
solved as :

4
. : . 2
i . simulation erperiment
Minimize [Z w; (Si - S; ) ]
i=1
c c
w.T.t. Omaz, Omaz, U aNd Ug

OR

w.r.t. Omaz,0  and & : (3.23)

The weights w; may be suitably chosen to impart preferential importance to the key variables.
Equal weights are chosen for this analysis.

Two sets of resulting values of the cohesive zone parameters are presented in table 2. The first
set correspond to values that are evaluated by comparison with the results of experiments with
specimen 1. When these parameters are used to simulate the other specimens 2, 3 and 4, it is seen
that the maximum difference between experiments and simulations occur for specimen 3. A second
set of parameters are consequently derived using the key variables S; for both specimens 1 and 3,
shown in figures 3.5 and 3.10. A small difference is noted in table 2, between the values of the two
sets. The results shown in the following sections are with the second set of cohesive parameters.
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Comparison of VCFEM and experimental results

Results of VCFEM simulations for the four different microstructures of specimens 1, 2, 3 and 4 are
compared with experiments, macroscopically in figures 3.5, 3.10 and 3.15 and microscopically in
figure 3.4. The abscissa in figures 3.5, 3.10 and 3.15, is the gage strain recorded by 0.8 mm strain
gages mounted on the specimen surface (A in figure 3.3a). The corresponding strains in VCFEM
analyses are calculated from the change in length of a 0.8 mm segment, located on the 2D specimen
boundary. closest to the fiber. In table 3, the simulated gage strains and the area-averaged strains
are tabulated. There is a small difference between the two strains. This may be attributed to the
fact that the edge along which the gage strain is measured is sufficiently close to the fibers for
local effects of the interface to prevail. The ordinate in the plots of figures 3.5, 3.10 and 3.15 are
the area-averaged macroscopic stresses in the direction of loading. The stress-strain plots for all
three decohesion models (Geubelle, Needleman-polynomial and Needleman-exponential) in figure
3.5 show good agreement with the experimental stress-strain behavior. The onset of debond, sig-
naled by a sharp reduction of slope, is also predicted quite well. However, the arrest of debond, as
indicated by an increase in the post-decohesion stiffness. is more gradual for the simulations than

for experiments.

The experimentally determined debonding angle by dye injection is evaluated in figure 3.4 to
be approximately 85°. The corresponding simulated value is found to be 91° ( see table 3). This
corresponds to a 6.6% deviation from experiments. Table 3 also presents the overall stiffness values
before and after debonding and the total debonding angle along the interface, using Geubelle’s
model [15]. The undamaged overall stiffness Kyq is the slope of the area averaged tensile stress-
strain plots in the loading direction, for the rectangular section through the cruciform center. The
highest K4 is observed for specimen 2 with @mge; = 0°, while the lowest is that for specimen 4
with a lower volume fraction. The maximum drop in stiffness occurs with specimen 3 (amq; = 90°)
since this interface undergoes the largest debonding angle (§;=134°). The minimum drop is for the
multiple fiber specimen even with considerable interfacial debonding (64=87°), mainly due to the
small area fraction. The increase in debonding angle, as functions of the averaged strain, are plot-
ted in figures 3.7 2nd 3.16. For specimen 1, the response of the three interfacial decohesion models
are extremely close. The debonding angle increases rapidly after initiation with little additional
strain. and then tapers off asymptotically to a stable value. The initiation strains for specimens 1
and 3 are quite close, while that for the specimen 2 is significantly lower. Also the smallest stable
debond angle occurs with the specimen 2 and the largest for specimen 3 with specimen 1 in the
middle. The stable debonding angle for both specimens 1 and 4 with circular fibers are quite close.

To understand the effects of stress distribution on the debonding process, the normal and tan-
gential interfacial stresses onn and on; are plotted from o = 0° (the loading direction) to ¢ = 180,
in figures 3.8, 3.9,3.11,3.12, 3.13 and 3.14. The peak stress at the tip of the crack or debond
is obtained from the spring tractions at the node-pair. just ahead of the debonded nodes where
the condition § = 1 in equation (3.14) is satisfied. The normal stress plots are symmetric about
the angular position ¢ = 90°, while the tangential stresses are antisymmetric about this angle.
Prior to debonding, the normal stress is maximum at o = {)°. while the shear stress peaks out at
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# = 45°. Once debonding initiates, the peaks occurs at the crack tip and subsides monotonically till
it reaches the pole at ¢ = 90°, where onn is mildly compressive. With progressive debonding, the
peak tensile stress op, initially increases in magnitude but subsequently decreases. This behavior
may be explained as a consequence of two competing phenomena, viz. an increase in average stress
due to increasing debond length and a decrease in the normal component of stress with increasing
angular orientation, especially as ¢ — 90°. The compressive region also increases with increasing
decohesion. Similar observations have also made in [1]. For the tangential stress oy, the maximum
value at the crack tip is also found to first increase slightly and then decrease with progressive
debonding. From these plots, it is easy to explain the reasons for the nucleation and progress in
decohesion. as depicted in figures 3.7 and 3.16.

Through a combination of experimental and computational simulations, these examples estab-
lish considerable confidence in the model for understanding the behavior of the interfacial debonding

phenomena.

3.3.3 Multiple Fibers in the Microstructure

In this final set of examples, computational analyses are conducted to understand the effect of
morphology and applied boundary conditions on the initiation and progress of debonding induced
damage in microstructures containing multiple fibers. The microstructure in these examples contain
100 circular fibers in a square region. To investigate the role of fiber interaction due to different
spatial dispersions, two distributions viz. a uniform distribution and a random distribution are
considered. For comprehending the role of boundary conditions on the damage evolution process,
two in-plane conditions viz. (a) periodic conditions and (b) displacement (non-periodic) boundary
conditions, are specified. The periodicity boundary conditions are imposed by requiring edges- to
remain straight and parallel to the original direction throughout deformation. This may be achieved
through the following conditions.

Uy = O(cma:=0),uy=0(cmy=0),u,=uap(onz=LI),uy=D;(<my=Ly)
T, = O(onz=0andz=0L;), T; =0 (ony=0and y = L,) ' _ (3.24)

where u,p is a monotonically increasing applied displacement and D} is determined from the av-
erage force condition [y Tydz = 0 on y = Ly. For the displacement boundary conditions, y = L,
is a traction free-edge. The elastic material properties for the reinforcing steel fibers and epoxy
matrix are the same as in the previous section, i.e. Young's modulus Egee = 210 GPa, Poisson’s
ratio vseer = 0.3; Young's modulus Eepozy = 4.6 GPa. Poisson’s ratio vepozy = 0.4. The interface
is represented by the cohesive zone model of Geubelle et. al. [15] with the same parameters, ie.
Smar = 0.9347, Omaz = 0.012570 GPa, uf = 0.00007217 rnmn and ué = 0.00006395 mm. The
plane strain Voronoi cell finite element model is used in this analysis, with a tessellated mesh of
100 Voronoi elements each containing a fiber. For the uniform distribution, the tessellation process
yields square elements, while for the random distribution the cells have variable number of edges.
The two meshes with boundary conditions are shown in figures 3.17 a and b.
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The macroscopic or area-averaged stress-strain response for the two architectures are plotted
for the two boundary conditions in figure 3.18a. Prior to debonding, the stiffness of the random
microstructure is marginally higher than that for the uniform one. For each microstructure, the
behavior with periodicity is stiffer that that without. This is due to the additional displacement
constraint imposed by the periodicity condition, which raises stresses in the microstructure. Appre-
ciable debonding in fibers is signaled by an abrupt change in slope of the stress-strain curve. This is
noticed at a significantly smaller strain for the random microstructure. However. the ultimate loss
of stiffness is higher for the uniform microstructure. The number cf debonded fibers as a function
of increasing strain is plotted in figure 3.18b. The rate of damage growth is more gradual for the
random microstructure. This rate is initially low, but increascs considerably with straining in the
intermediate region and finally tapers off at higher values of strain. This is because, initial stages of
debonding are influenced by the inter-fiber spacing. Interfaces of fibers that are in close proximity
are damaged early. The subsequent stages of damage also depend on the overall strain state. In the
uniform model, the initiation takes place later but the growth of damage by interfacial decohesion
occurs rapidly. This is particularly true for the periodic boundary condition. With the displacement
boundary conditions, the growth is slow in the beginning but increases substantially with straining.

A clear delineation of the debonding process is obtained from the contour plots of the tensile
stress oy in figures 3.19 and 3.20. The figures show the debonds on the interfaces, as well as
locations of stress concentrations. For the uniform microstructure with displacement boundary
conditions (non-periodic), debonding starts at the fiber in the upper right’ corner and propagates
down along the diagonal to create a dominant damage path. The reason for the damage pi'opa-
gation along a distinct path is explained from the radial stress o, plots along the interfaces, in
figures 3.21. The fiber numbers 1, 2, 3, and 4 are delineated in figure 3.17a. At a macroscopic
strain value of e = 1.31 x 10™%, just before initiation, the radial stress at the interface of the corner
fiber #2 is higher at the poles along to the loading axis (i.e. 6§ = 0°,180°). This causes the fiber
# 2 to debond first. Following this, the radial stress in fiber # 3 exceeds that of others at the
poles and hence debonds. This pattern is observed for the entire load cycle. Finally, all fibers
debond at higher values of the applied strain. In contrast, all fibers debond simultaneously for
the periodic boundary conditions, with no apparent dominant path. A single unit cell with these
periodic boundary conditions also produce identical results. It is clear from this example, that
even though the microstructure may have geometric periodicity, the evolution of damage to cause
failure is likely to follow a non-periodic and dominant local path. This makes the application of
the conventional unit cell analysis to problems with evolving damage, inappropriate.

For the random microstructure, the difference in debond initiation and growth behavior with
different boundary conditions is not as prominent. In contrast, the effect of local morphology is
much more dominant. This is observed in figures 3.18b and 3.20. Debonding initiates in fibers that
are in close proximity with other fibers and evolves randomly with increased straining. The relation
between damage evolution and the local dispersion for the random microstructure, is better under-
stood from the histograms of figures 3.22 and 3.23. In these histograms, the relative spacing and
proximity among fibers is characterized by two spatial functions viz. (a) local area fraction (LAF)
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and (b) the nearest neighbor distance (NND). The local area fraction (LAF ) is measured as the
ratio of the fiber area to the area of the Voronoi cell containing it. The nearest neighbor distance
(NND) is measured as the smallest surface to surface distance between neighbors that share com-
mon Voronoi cell edges. The ordinate of the histograms represents the total number, as well as the
number of debonded fibers as functions of the characterization functions LAF and NND. Different
shades are used to delineate additionally debonded fibers with increasing strain. The LAF function
has a bell shaped distribution whereas the NND function is clearly monotonically decreasing for
the total number (debonded+intact) fibers. Debonding initiates at the higher values of LAF and
lower values of NND. There is a monotonic decrease of debonded fibers with decreasing LAF and
increasing NND. The monotonicity is particularly obvious for the latter function. The low NND
represents closely packed fibers which are more likely to debond early, in the loading cycle. Similar
responses are obtained for both periodic and displacement boundary conditions. The statistics of
debonding are also tabulated in table 4.

The effect of volume or area fractions are also investigated through a second area fraction of
vy = 10%. Both constant and randomly varying sizes of randomly dispersed fibers are considered
for the 10% microstructure. The macroscopic responses for these models are plotted in the figures
3.18. As long as the volume fraction is the same, the overall stiffness is not very sensitive to the
size distribution, i.e. it is quite close for both the constant and.the randomly varying diameters.
However. the dependence of damage on the size distribution is considerable and occurs earlier for
the variable size. The onset of debonding is considerably delayed for the lower volume fraction,
due to increased average spacing between fibers which result in lower stress concentration. In
summary, the process of initiation and growth of damage by interfacial debonding depends on
several competing factors such as morphology, fiber interaction. load and boundary conditions. It
is important to include large portions of the microstructure to capture the different effects, which
is a major shortcoming of unit cell analyses.

3.4 Concluding Remarks

The initiation and growth of damage by interfacial decohesion in multiple-fiber polyi’uef matrix
composites is analyzed with in-plane loading in this work. The fiber and matrix phases are mod-
eled with elastic properties. The progress of interfacial debonding with quasi-static loading is
modeled by cohesive zone constitutive relations in terms of normal and tangential tractions and
interfacial separation. In these relations, the traction increases with separation, reaches a maximum
and subsequently subsides to zero traction, signaling debonding. The stress and damage analyses is
conducted with the Voronoi cell finite element model. that has been established as an effective tool
for modeling of non-uniform microstructures. VCFEM has been developed (see (34, 21}) to yield
high computational efficiency with good accuracy for modeling large heterogeneous microstructures.
~

The VCFE model for interfacial debonding has been compared with a variety of established

results in literature, the details of which are reported in the M.S. thesis of Ling [16]. Only a single
satisfactory comparison of macroscopic results with those in (22] are presented in this work. A com-
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bined experimental-computational study is conducted for specimens of polymer matrix composites
in this work An inverse methodology is developed for calibrating the cohesive model parameters
from simple experimental results. It is based on minimizing the difference in the macroscopic stress-
strain plots with damage, obtained by VCFE simulations and experiments. For the experiments,
single and multiple fiber cruciforms specimens of circular and elliptical shapes, are fabricated to
avoid stress concentrations at the edges. Results are considered from more than one experimental
specimens. to account for the variability between experiments in the calibration process. VCFE
debonding analyses are subsequently conducted to simulate experiments with other specimens. The
microscopic debonding angle in experiments is estimated by a dye penetration technique. Good
agreement is obtained between experiments and the simulations, both with respect to macroscopic
(averaged stress-strain behavior) and microscopic (debond angle) observations.

In numerical simulations of multiple fibers microstructures, different morphologies and bound-
ary conditions are analyzed to understand their influence on the decohesion process. Different
architectures include uniform and random dispersions, different volume fractions and different size
distributions. The boundary conditions include imposed periodicity and prescribed displacement
conditions. For the uniform microstructure, the path of growing damage is found to be very sen-
sitive to the boundary conditions. Even with periodic geometric features, a distinct non-periodic
and dominant damage path evolves with increasing strain, for non-periodic boundary conditions.
This effect is significant at higher volume fractions. Periodic damage is only observed with periodic
conditions. An important conclusion that can be derived from this example is that unit cells with
periodic boundary conditions are inadequate for properly predicting the expected local nature of
damage growth. For random microstructures, the debond induced damage is found to be more
sensitive to the local morphology e.g. inter-fiber spacing than to the boundary conditions. The
damage growth process is observed to take place gradually over a longer range of increasing strain
for the random microstructures. '

This study reveals the significance of analyzing large regions of the microstructure and proves
the effectiveness of the VCFEM analysis for the same. The Voronoi cells also play an important role
in developing geometric descriptors for quantitative characterization (e.g. LAF, NND) since they
represent regions of immediate influence for each fiber and also delineate neighbors. It provides
the essential link between the microstructural features and response, that is important in damage
analysis.
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Specimen # | # fibers | Shape | z, ye(mm) | ze,ye(mm) | a,b(mm) | A% | af,;
1 1 Circular 3.41,3.0 6.82,6.0 2.36,2.36 10.69 -
2 1 Elliptic 3.88,2.74 7.21,5.92 3.71.1.52 10.37 0
3 1 Elliptic | 3.78,3.02 7.21,5.59 3.71,1.52 | 1099 | 90
4 5 Circular | 2.89.2.23 7.65,5.69 | 0.355,0.355 | 1.14 -
1 5 Circular | 4.31,2.23 7.65.5.69 | 0.355.0.355 | 1.14 -
4 3 Circular | 4.22,3.47 7.65,5.69 | 0.355,0.355 | 1.14 -
4 5} Circular | 2.94.3.37 7.65,5.69 | 0.355,0.355 | 1.14 -
4 3 Circular | 3.68,2.78 7.65,5.69 | 0.355,0.355 | 1.1+ -

Table 3.1: Statistics of geometrical parameters in the experimental specimens: (a) specimen num-
ber, (b) number of fibers, (c) fiber cross-section, (d) fiber centroidal coordinates (zc,yc), (e) size
of the cross-section shown in figure 3.1b (z,¥e), (f) fiber major and minor axes (a,b), (g) cross-
sectional area fraction (Af) and (h) major axis angle with the loading direction (amq;)-

Figure 3.1: (a) A mesh of Voronoi cell elements generated by tessellation of the heterogeneous
microstructural domain (b) A typical Voronoi cell element with delineation of the phases and

interface region.
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‘ Model Specimen # drmaz ] Omaz uf ug ]
Geubelle. 1 only 0.9412 0.012846 GPa | 0.00007392 mm | 0.00006407 mm
Geubelle 1&3 0.9347 0.012570 GPa | 0.00007217 mm | 0.00006395 mm

| Model | Specimen # | Omaz | 5* a ] ]

* Needleman(poly) 1 only 0.014613 GPa | 0.00004837 mm 0.7104

. Needleman(poly) 1&3 0.014428 GPa | 0.00004889 mm 0.7116

i Needleman({expo) 1 only 0.014980 GPa | 0.00005019 mm 0.6841

. Needleman(expo) 1&3 0.014831 GPa | 0.00005007 mm - 0.6887

Table 3.2: Cohesive zone parameters for the three models evaluated from the specimen 1 only and
specimens 1 and 3 combined.

"Specimen # | Kya(MPa) | K4(MPa) | AK% | Averaged €,% | Gage e % 09

| 1 4974 4265 14.25 0.140 0.141 91
2 5249 4621 11.96 0.066 . 0.063 46
3 5163 3581 30.64 0.145 0.111 134
4 4821 4682 2.88 0.139 . 0.138 87 (all)

Table 3.3: Results of VCFEM simulation with Geubelle’s model: (i) the overall undamaged stiffness
K4 for the 2-D section, (ii) the damaged overall stiffness Ky, (iii) the change in overall stiffness,
(iv) the averaged tensile strain at the onset of debonding €7, (v) the corresponding gage strain €,

and (vi) the final debonded angle 69.

fiber # | LAF | NND (mm) | ¢e=0.96 | e=1.04 | e = 1.12
Di ] Pe | Di| Pe | Di | Pe

1 34.26% 0.819 D/  DID{yD|{D|D

2 25.75% 2.388 B/ B |D|D|D]|D

3 25.76% 0.916 B!/ B!/ B|D|D}|D

4 25.12% 1.336 BB B|B|D|D

5 21.30% 2.390 B{B'B|B|B|D

6 11.01% 6.453 B| B .B|B|B]|B

=
Table 3.4: The relation between quantitative descriptors of the microstructure and the damage
propagation for displacement (Di) and periodic (Pe) boundary conditions. Values of strain should
be read as € x 10~%. D stands for debonded and B is for bonded at a particular strain.
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Figure 3.3: (a) A schematic diagram of the cruciform specimen with reinforced fibers and applied
loading, (b) a typical cross-section delineating critical geometric parameters.
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(a) (b)

Figure 3.4: (a) Faceview of the debonded cruciform specimen showing dye penetration, (b) the
cross section indicating debonding angle as the limits of the dye penetrated region.
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Figure 3.5: Macroscopic pre- and post debonded stress-strain response of the specimen with a single
reinforced circular fiber. The roman numerals (I, II, III and IV) correspond to critical property

values used to calibrate the cohesive zone model.
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Figure 3.8: Distribution of the normal stress o, along the circular interface for increasing values
of the debonded angle 6.
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Figure 3.10: Macroscopic pre- and post debonded stress-strain response of the specinien with a
single reinforced elliptical fiber, oriented along and perpendicular to the loading axis.
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Figure 3.16: Plot of the debonding angle 6 as a function of strain, for each fiber in

specimen.
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Figure 3.17: Tessellated mesh of Voronoi elements for microstructures containing 100 fibers with

area fraction=20%, (a) Uniform distribution (b) Random distribution.
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Figure 3.18: (a) Macroscopic pre- and post debonded stress-strain response of the microstructures
containing 100 circular fibers and (b) microscopic plot of the number of debonded fibers as a func-
tion of strain. The 6 plots in each figure correspond to: (1) vf=20%, uniform dispersion-uniform
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Figure 3.19: Contour plots of the microscopic axial stress . for the unformly dispersed microstruc-
ture (vf=20%) at € = 1.34 x 10™%; (a) without periodicity and (b) with periodicity.
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Figure 3.20: Contour plots of the microscopic axial stress ozz for the randomly dispersed mi-
crostructure (vf=20%) at € = 1.12 x 10~%; (a) without periodicity and (b) with periodicity.
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Figure 3.21: Distribution of the radial stress o, along the interface for different fibers (1, 2, 3
and 4 in figure 3.17a) of the uniform microstructure with displacement boundary conditions for (a)
e=131x10"* and (b) e = 1.33 x 1074
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Figure 3.22: Histograms showing the number of debonded and bonded fibers as functions of (a)
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boundary conditions. 1, 2, 3 in the legend correspond to increasing strain levels € = 0.96 x 1074,
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47




Number of fibers

Number of fibers

MEAL

] 2
- ] 1
10 — .
3 1
S .
0 ! AN
0.1 0.15 02 0.25 0.3 0.35 04
Local area fraction
(a)
50 T T T T T
15 = —
af- : i
A 3 .
[
30+ % . -
Y ] )
- [
0 3 S r_I_‘ . n H L
0 0.01 0.02 0.03 00 0 0Ss 0.06 0.07

Nearest neighbor S-S distance

(b)

=

Figure 3.23: Histograms showing the number of debonded and bonded fibers as functions of (a) local
area fraction (LAF) (b) nearest neighbor surface to surface distance (NND), with displacement
boundary conditions. 1, 2, 3 in the legend correspond to increasing strain levels € = 0.96 x 1074,
€ =104 x 10~* and e = 1.12 x 10™*, while 4 in the legend corresponds to undamaged interfaces.

48




Chapter 4

A Multi-level 'Computational ‘Model
for Multi-scale Damage Analysis in
Composite and Porous Materials

4.1 Introduction

Heterogeneous structures with second phase inclusions or voids in the microstructure are conven-
tionally analyzed with macroscopic properties obtained from homogenization of response at smaller
(meso-, micro-) length scales. The mathematical homogenization theory, which uses asymptotic
expansions of displacement, strain and stress fields about macroscopic values, has been used as a
tool for analyzing multiple scale responses in Benssousan et. al. (1978), Sanchez-Palencia (1980),
Parton and Kudryavtsev (1993), Bakhvalov and Panasenko (1984). The method is based on as-
sumptions of spatial periodicity of microscopic representative volume elements (RVE) and local
uniformity of macroscopic fields within each RVE. It decomposes the multiscale boundary value
problem into a decoupled set of micro-scale RVE problem and a macro-scale problem. Concurrent
finite element analyses are executed- at the each scale for information transfer between the scales.
Multiple scale analysis of linear elastic reinforced composites by this method have been conducted
by Fish and Belsky (1995), Fish'and Wagiman (1993). Guedes and Kikuchi (1991) and Hollister
and Kikuchi (1992). For nonlinear materials, the homogenization methods have been extended by
Suquet (1985), Fish et.al. (1997), Guedes (1990) and Cheng (1992). The method has also been
implemented to simulate damage by fiber-matrix debonding in linear elastostatics by Lene (1986)
and fiber rupture using a phenomenological damage model by Devries et. al. (1989).

Despite its advantages, asymptotic homogenization has suffered shortcomings arising from effi-
ciency and accuracy considerations. Enormous computational efforts can result with this method
due to the fact that at each integration point in the macroscopic model, boundar? value problems
of the microstructural RVE should be solved twice. To cconomize computations, many studies
have assumed simple unit cells models of the microscopic RVE. Such idealizations may however be
unrealistic for deformation and failure analysis of many materials. The homogenization method

49




has another major limitation stemming from its basic assumptions, viz. (a) uniformity of the
macroscopic fields within each RVE and (b) spatial periodicity of the RVE. The uniformity as-
sumption is not appropriate in critical regions of high gradients, where the macroscopic fields can
vary considerably. Free edges, interfaces, macrocracks, neighborhood of material discontinuities
and most importantly in the regions of evolving microscopic damage and instability are potential
sites of nonuniformity. Furthermore, statistical periodicity implies that the RVE may be repeated
to represent the entire neighborhood of a macroscopic point. For non-uniform microstructures suf-
ficiently large portions should be considered as RVE for homogenization analysis. Unit cell models
are severely limited in this respect. Even higher order theories of homogenization may be com-
putationally unviable. A few effective global-local techriques based on hierarchical decomposition
and superposition of field variables have been proposed by Belytschko et. al. (1994), Robbins
and Reddy (1996) and Hughes (1995). Pagano and Rybicki (1974) had discussed the breakdown
of effective modulus theory for composite laminates with free edges and the need for global-local
techniques. Fish and Belsky (1995) and Fish et.- al. (1994) have used global-local techniques with
multigrid methods to extend the multiple scale modeling to non-periodic materials. Zohdi et. al.
(1996), Oden and Zohdi (1997) and Oden et. al. (1999) have developed a homogenized Dirichlet
projection method (HDPM), which resolves the microstructural effects at different scales on the
macroscopic response of heterogeneous structures.

Adaptivity in the computational modules for multiple scale problems entails minimizing two
types of errors, viz. the discretization error and the modeling error due to homogenized material
properties as discussed in Oden et. al. (1997,1999). In the present work, an adaptive multi-level
method is proposed in to address the latter type of modeling error. It is aimed at improving
the accuracy of analyses of elastic-plastic composite and porous structures with microstructural
damage. The model uses computational hierarchy to concurrently predict the evolution of vari-
ables at structural and microstructural scales, as well as to track the incidence and propagation of
microstructural damage. Analysis of microstructural response with arbitrary distributions, shapes
and sizes of heterogeneities is conveniently done by the Voronoi Cell finite element model (VCFEM)
(see e.g. Moorthy and Ghosh (1996,1998), Ghosh et. al. (1897)). A high level of computational
efficiency with sufficient accuracy and resolution has been achieved for elastic and elastic-plastic
materials by this method. Progressive damage by particle cracking has been done in Moorthy
and Ghosh (1998). Recently, an adaptive VCFEM has been successfully proposed by Moorthy and
Ghosh (1999), where element adaptation is executed in two consecutive stages based on a-posteriori
evaluation of error measures. In the first stage, displacement function adaptations are carried out
by a h—refinement and p—enrichment strategy, which is followed by an enrichment of stress func-
tions to reduce the error in kinematic relations.

For periodic representative volume elements (RVE) of elastic and elastic-plastic materials, the
microstructural VCFEM has been coupled with structural analysis codes by ysing asymptotic
homogenization in Ghosh, Lee and Moorthy (1995,1996). This method fails for problems where as-
sumptions of macroscopic uniformity and statistical periodicity are questionable. Consequently, it
becomes necessary to implement a combination of homogenization and global-local methods, which
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is a nontrivial undertaking due to lack of apriori knowledge of regions that require differential
resolution. The multi-level methodology developed in this work addresses this issue by differenti-
ating between non-critical and critical regions and ranging from macroscopic computations using
continuum constitutive relations to zooming in at ‘hotspots’ for pure microscopic simulations. The
zoom-in is accomplished by a mesh-enrichment technique or h—adaptation, where macroscopic el-
ements are successively dissected in regions of steep solution gradients. Also the adaptations are
based on local estimates of ‘error’ or solution gradients. The work introduces three levels of the
computational domain, for (a) fully macroscopic analysis with homogenized material parameters,
(b) macro-microscopic analysis for periodic RVE’s and (c) fully microscopic analysis. Additionally
a new way of developing a piecewise continuous elastic-plastic constitutive mods: is presented in
this work. This model accounts for the details of microstructural morphology and variables. A
number of numerical examples are solved with various microscopic architectures to support the
development of this multi-level model.

4.2 Two Way Coupling for Multiple Scale Modeling

Multiple scale modeling of heterogeneous materials is necessary to concurrently account for spatial
variability at the macro- and micro-scales. An effective model of this class requires two-way coupling
for efficient computing, as well as for accurate representation of the necessary variables at different
scales. The first is a *bottom up’ coupling for determination of equivalent homogeneous behavior at a
macroscopic point X, as a function of the microstructural geometry and behavior of the constitutive
phases, but independent of applied loads to the structure. In the homogenization procedufe, an
isolated representative volume element (RVE) Y(x) C R3 is identified at microstructural scale
of heterogeneities (figure ??b). The scale y of the RVE domain Y (x) is large with respect.to
the characteristic length 1 of microscopic heterogeneities, but is significantly small compared to
the macroscopic length scale L of the structure and applied loads. Homogenized variables at the
macroscopic scale are obtained by volume averaging of variables in the RVE, following the definition

1
< f>vm= m/yf(y)dy where Y| =/YdY %Y

The condition for macroscopic homogeneity, according to the Hill-Mandel hypciiesis (see e.g. Hill
(1965)), assumes equivalence of strain energy for the actual and equivalent homogenized media.
Thus for a statically admissible stress field o(y) and kinematically admissible strain field e(y),

<o:e€>y=< 0 >y:< €Dy VyeY (4.2)

The microscopic stress o(y) and strain €(y) fields satisfying the homogeneity condition (4.2) may
be obtained by solving boundary value problems for the RVE Y with prescribed homogeneous

stress/strain or periodicity boundary conditions, stated as: R
T =< o >y n(y)=c-n(y) on Y : Uniform Traction (a)
w =< e>y-y on 8Y: Uniform Strain (b)
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W=<e>y y+iuly) =<e>y y+iuly+kY¥) on 8Y: Y-Periodicity (c) (4.3)

where k is an 3x3 array of integers and Y is the period of Y-periodic displacement functions u,
interpreted as local perturbations to macroscopic strain based displacement fields. The macroscopic
constitutive equations are obtained by solving a boundary value problem of the RVE Y with any
one of the three sets of boundary conditions in equation (4.3), followed by the averaging process in
equation (4.1). For linear elastic constituent phases in Y, the relation between the strain energy
functions has been established in Suquet (1987) as:

<e> El:<e> < <e>E!' <e> < <e>El <e> VE c ®® (4.4)

per

where E7L. E'P}er. E",, are respectively the homogenized stiffness tensors evaluated with uniform trac-
tion, periodicity and uniform strain boundary conditions, and < € > is the macroscopic (applied
or averaged) strain field. The difference in stiffnesses with the kinematic and kinetic boundary
conditions, reduce with decreasing size of Y. It is generally concluded by Hollister and Kikuchi
(1992) that for the same RVE size, the periodicity boundary conditions are expected to yield more

accurate statistically homogenized constitutive parameters and macroscopic properties.

The other coupling is the ‘top down’ where the evolution of variables are evaluated in the
microstructure from known macroscopic variables, by a process termed as localization. In those
regions. where the microstructure may admit a RVE Y, the microscopic variables can be evaluated
by solving a boundary value problem with imposed macroscopic strains and the local periodicity
condition in equation 4.3c. In other regions, where assumptions of local periodicity of the RVE
may be unrealistic, the localization process will entail direct interfacing of the microstructural and
MaCroscopic regions.

4.3 A Multi Level Model for Coupling Different Scales

In the spirit of true two way coupling of multiple scale problems, the computational domain in this
work is adaptively decomposed into three levels of hierarchy based on requirements of resolution.
Such hierarchy is intended to increase computational efficiency as well as accuracy in concurrent
prediction of variables at the continuum and microstructural scales. As proposed in Lee et. al.
(1999), the model uses homogenization of microstructural RVE solutions to evaluate homogenized
properties and cascades down the scales at hotspots of evolving damage. The three levels of hier-
archy with requirements of increasing resolution (figure 1.2) are as follows.

ei. Computational Subdomain Level-0:

These correspond to non-critical macroscopic regions in figure 4.2a. where deformation variables
are relatively uniform and periodicity conditions may be assumed for the underlying material RVE.
Scale effects are negligible in this region and local constitutive relations may be derived from pos-
tulates of the RVE approaching zero volume. Continuum level anisotropic plastfeity constitutive
relations, that are consistent with the actual microstructural constitution, are developed for macro-
scopic modeling of these regions.

52




The level-0 macroscopic simulations are accompanied by element refinement or h-adaptation for
two reasons. The first is to identify and reduce a chosen ‘error measure’ in the macroscopic com-
putational model. A second attribute is that it enables the computational model to ‘zoom in' on

regions of evolving nonuniformity due to microscopic non-homogeneity. This reduces the disparity
in size of the macro- and micro- scale elements by successive refinement of macroscopic elements
in the critical regions as shown in figure 4.2a.

eii. Computational Subdomain Level-1: These are regions that face imminent microscopic
non-homogeneity and resulting macroscopic nonuniformities (figure 4.2a,b). Though the computa-
tions are still macroscopic, concurrent monitoring of the development of damage and instabilities in
the RVE is possible in this level. For concurrent macro- and micro- scale analyses the asymptotic
homogenization methods, which is based on the existence of an RVE, is used. Macroscopic element
refinement by h-adaptation continues for this level.

eiii. Computational Subdomain Level-2: These critical regions materialize with the evolution
of microstructural damage in the form of evolved microcracks or instabilities (figure 4.2b), leading
to high macroscopic field gradients. The assumptions of macroscopic uniformity and local periodic-
ity are unrealistic. To realize scale effects, it is required that the level-1 macro-micro computational
model switch to a completely microscopic model, encompassing large portions of the microstruc-
ture. A detailed flow chart of the adaptive hierarchical process is depicted in figure 4.3.

The substructured computational domain is delineated as an elastic-plastic body of material
domain Qar47 that consists of regions Qara7(p) for which the RVE is repeated periodically, and
also of regions Qasa7(np) Where the periodicity assumptions do not hold, i.e.

Qprar(x,1) = Qprar(p) (X, 1) U QaraT(np) (X, 1) (4.5)

The macroscopic regions of periodicity are further constituted of repeating a large number of RVE’s

Y. ie.
MAT( MAT
Qmar(p) = Yy (I{)Y ®) where Y, ATP) =y, v - A (4.6)

Here N (p) corresponds to the number of different RVE's Y} in the periodic regions, and for all
practical purposes, oo corresponds to a sufficiently large number. The non-periodic region 4 AT(np)
is defined as the set of all microstructural regions for which the N(np) RVE's are not repeated, i.e.

QpraT(np) = U Y MATIPL vy =0 Wk #1 (4.7)

The level-0 and level-1 of the computational domain 2 correspond to the periodic regions, while
the level-2 belongs to the non-periodic regions as

QoU C Uuparp) ¢ 2 T Qararnp) = (4.8)




4.4 Homogenization with Voronoi Cell FEM

4.4.1 Asymptotic homogenization with microstructural periodicity

Consider a heterogeneous structure occupying a region Qs¢rycture (figure ??a), for which the hetero-
geneous microstructure constitutes of spatially repeated RVE's Y (x) about a macroscopic point x
as shown in figure 7?b. The RVE is discretized into a mesh of Voronoi cells, which naturally evolve
from the microstructure by Dirichlet tessellation. In the Voronoi cell FEM (VCFEM). each Voronoi
cell represents a basic structural clement (BSE) which is the neighborhood of a heterogeneity in
the microstructure. The dimensicns of the Y(x) are typically very small in comparison with the
structural dimensions L. i.e. % is a very small positive number €. Due to variation of evolutionary
variables in a small neighborhood € of the macroscopic point x, all variables are assumed to exhibit
dependence on both length scales i.e. @ = ®(x, %), where y = ¥. The superscript ¢ denotes
association of the function with the two length scales and hence Q¢ corresponds to a conunected
structural and microstructural domain. The assumption of periodic repetition of the microstruc-
ture about x makes the dependence of the function on y(= ¥). Y-periodic (see e.g. Bakhvalov and
Panasenko (1984), Guedes and Kikuchi (1991), Hollister and Kikuchi (1992), Devries (1989)). For
small deformation elasto-plasticity, the rate forms of the equilibrium, kinematic and constitutive
relations are given as:

- 1 [{eu  oul
Equilibrium : 6§, = —fi, Kinematics : ¢5, = = | —= + —&
7 b= H=3 <8a:f Bz

Constitutive :  0;; = Ejjp €l in Q° (4.9)

where a7, (x. ¥), é;(x,¥) and 4¢(x,y) are Y-periodic rates of stress. strain and displacement fields
respectively. Furthermore the periodic boundary conditions may be specified as

uf(x,y) = u(x,y + kY) on RVE boundary 8Y (4.10)
and &5; is continuous across )4
The Y-periodic displacement racé field is approximated by an asymptotic expansion about x with
respect to the parameter e:

w(x) = wd(x,y) + eu} (x,y) + €ul(x.y) +---, ¥y = (4.11)

x
: €

Noting that the spatial x¢ derivative of any function depends on the two length scales and is given
as:

0 b g 109
—{ P(x, ¥y = — = — - - — 4.12
oz ( (x.y € )> Jr, €0y, ( )
the stress rate tensor g;; can be expressed as =
1 2 ).
a5 = Ed?j + d}j + €0;, + e‘ofj e (4.13)
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where

o oud  oul . oul  oul

0 _ k 21 kL 22k 2 — pe Tk L Tk

03 = fjkla—yl— y 035 = le]kl (azl + 5 a y 045 = ze]kl a.’L'[ + 5 6 u (414)

From equations 4.9 and 4.13, and using the periodicity condition on the RVE boundary [, fdl'y =

0, it can be proved (see e.g. Ghosh et. al. (1995,1996)) that
-1

0 95 b

6% =0, uw?=ud(x) and

iy a_u’lc}

il RS =0 415
ayj ay] 17kl {8y ] ( )

By neglecting the terms associated with € or higher in equation (4.13), the constitutive relation in
the Y-domain is expressed as

o4 ouj

¢ = gL = E€, 65, = Ef, (—& + —& 4.16

5] ij 17ki%kl 1]kl(8xl ayl ( )

e - . . : . _ 1 ou aul, .
Here é, is the m1crostructural strain rate tensor, for which ex = f(a—zf + 5;&) is an averaged

macroscopic part and e}, = Fgff + 3—‘- is denoted as a fluctuating strain rate tensor (see e.g.

Suquet (1985)). Due to 11near1ty of the rate problem, alj, ul

condition can be expressed as

and the microscopic equilibrium

onud o0 065 (y)
2l s k 1 Uy ij — :
o =65y )ax, i =X y) = Bz, 39, 0 (4.17)

In equation (4.17), 6 *fj' is a Y-antiperiodic function and x¥ is a Y-periodic function representing
characteristic modes of the deformation in the RVE. Substituting equation (4.17) in the constitutive
relations of equation (4.9) yields the microscopic constitutive relations as:
X axkl
UZ[(Y) = Eiejpm[ékp‘slm + ——E'] (418)
where §;; is Kronecker delta. The mean of equation (4 18) yields the homogenfzed elastic-plastic
tangent modulus for use in the macroscopic analysis. in the form

1 1 oxkt
EH, =<3ok > ’»‘4‘d}’=—/E-E Skplim + —2-)dY 4.
1kl — U Y= |Y| 1j IY‘ v z]pm( kp@lm 6ym) ( 19)
The macroscopic stress and strain relation can thus be stated as
. O ol )
£45(x) =< B (Semin + —£—) 20 >y= EH_emn(x) (4.20)
J J

ayl Jrp

where the homogenized variables are £(x) =< o‘(x.y) >y and e(x) =< €Tx,y) >y. The
incremental small deformation analysis for elastic-plastic materials can be conducted with the
homogenized modulus at the macroscopic level and by using the Voronoi cell finite element model
(VCFEM) for solving the microscopic problem.
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4.4.2 The Voronoi Cell FEM for Microstructural Analysis

The Voronoi cell finite element model (VCFEM) has been successfully developed for composite and
porous materials in Moorthy and Ghosh (1996,1998,1999). Arbitrary dispersion patterns, shapes
and sizes of heterogeneities are readily modeled by VCFEM. The computational model naturally
evolves by Dirichlet tessellation of the microstructure as shown in figure ??b. Each Voronoi cell
with the embedded inclusion or void is treated as an element in this formulation. In Moorthy
and Ghosh (1998) and Ghosh and Moorthy (1998), the VCFEM formulation has been extended
to include damage evolution in the form of particle cracking, where the crack is realized as an
elliptical void. Each Voronoi cell element is amenable to change in topology fror :wo constituent
phases (matrix and inclusions) in undamaged cells, to three phases (matrix, inclusion and crack)
in damaged cells. Complete particle cracking or splitting is assumed to occur at the very onset of

damage.

The VCFE formulation constructs a hybrid element by combining the aspects of finite element
methods with important micromechanics considerations. Use of a hybrid stress based formulation
results in a high level of accuracy with a significantly reduced degree of freedom, compared to
displacement based FEM models. Consider a typical representative volume element Y consisting of
N undamaged and/or damaged particles, that are contained in each of the N Voronoi cell elements,
as shown in figure ??(b). In VCFEM, the RVE Y is comprised of the Voronoi cell elements Y, i.e.
Y = UX.,Y.. The assumed stress hybrid formulation in VCFEM requires independent assumptions
of an equilibriated stress field (o) in each of the matrix and inclusion phases of each element
Y, = Y" U Y, and compatible displacement fields u on the element boundary Y, u’ on the
matrix-inclusion interface Y, and u” on the crack boundary 8Yc. In an incremental formulation for
elasto-plasticity, the incremental variational formulation introduces an element energy functional,

N¢(Ac,Au)=—- | AB(o,Ac)dY — | e:AcdY
Y. Ye
+ / (¢ + &o) -0 - (u+ Au) ddY (Inter-element Traction Reciprocity)
ay. .
- / (t + At) - (u+ Au) dT (Boundary Traction)
Cem

- / (@™ + Ao™ — 0 = Ac€) -n° - (u' + Au') Y (Matrix-Inclusion Interface Traction)
aY.

- / (0 + Ao®) -0 - (U’ + Au") OY (Crack Boundary Traction) (4.21)
aYer .

where AB is the increment of complimentary energy density. Variables (o,u) correspond to values
at the beginning of an increment, while variables (Ao.Au) are the corresponding increments in
a load increment or step. Outward normals on 9Ye, dY. and Y., are denoted by n°, n® and
n< respectively. Superscripts m, ¢ and cr are associated with the matrix, inclusion and crack
phases respectively in each Voronoi cell element. The total energy for the entire RVE of N Voronoi
cells is obtained as II€ = Zévﬂﬂf. Setting the first variation of ¢ in equation (4.21) with
respect to stress increments Ao to zero yields the element compatibility as the Euler equation,
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while setting the first variations of 1€ with respect to the independent boundary displacements
Au. Au' and Au” to zero, yield the inter-element boundary traction reciprocity, matrix-inclusion
interface traction reciprocity and zero traction crack boundary condition respectively. Independent
assumptions on stress increments Ac are made in the matrix and inclusion phases in each element,
thus allowing stress discontinuities across the interface. In this process special forms of the Airy’s
stress function ®(z,y) to enhance computational efficiency, has been developed in Moorthy and
Ghosh (1996.1998) for equilibriated stress fields. The functions facilitate stress concentration near
the interface and crack boundary, accounting for the shape of the inclusion and crack and also
help satisfy traction reciprocity at the interfaces dY. and 0Y,.. Furthermore, they decay at large
distances from the interfaces. Compatible displacement increments are generated on each of the
boundaries/interfaces 8Ye, 8Y. and 8Y., by interpolating nodal displacements using polynomial
shape functions. The stress and displacement interpolations may be expressed as:

{po™) = [P™(z,y)[{AB™} (in matrix) and {Ac€} = [P¢(z,y)][{AB°} (in inclusion)
{Au} = [L¥]{Aq} (on element boundary) . {Au'} = [L){Aq'} ( on interface), and
{Aau"} = [L){Aq"} ( on crack face) (4.22)

where {Aq}. {Aq'} and {Aq"} are the nodal displacement increment vectors, and [Le], [L€] and
'Le"] are the corresponding interpolation matrices.

4.4.3 Coupling Asymptotic Homogenization with VCFEM

In the incremental formulation, the equilibriated microscopic stress increment corresponds to
Acol(= Ac) in equation (4.17) and the microstructural strain increments are designated as Ae in
equation (4.16). Similarly, the increments in microscopic displacements on the cell boundaries 3Y,
are identified with Au! in equation (4.17) and those on the interface and crack surface are denoted
by Aul and Aul!” respectively. In the absence of explicit traction boundaries due to periodicity
conditions on the boundary, the incremental energy functional for each Voronoi cell element in
equation (4.21) is modified for the asymptotic homogenization process as:

e

1 |

e = - /Y 5 S5uba ok - /Y € : Aot dY +

/ (¢ + Ao) - nt - (u! + Au') dOY - / (0™ + Ao — 0 — Ac®) -0t - (u! + Aul) BY
aYe aY, .

- / (¢ + Aot€) - n - " + Aut’y 8y + / (e + Ae)AotdY (4.23)

AYer Ye
where 57, is an instantaneous elastic-plastic compliance tensor. The last term in equation (4.23)
incorporates the effect of macroscopic strains e in the microstructure. The stationary condition
of TIS with respect to stress increment Aoy; yields as Euler’s equations, the inczemental form of

kinematic relations
O(u} + Aul)

By in the element matrix and inclusion phases  (4.24)
Jj

G:J + Ae‘J = ¢€; + Dei; +

1
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Stationarity of the total energy functional € = X | IS with respect to displacement increments
Aul, Aul and Aul”, result in the inter-element, interface and crack boundary traction reciprocity

conditions respectively.

(05, + Adfy) - nit = (0, + Agfy) -n5™  on BY,
(0% + Do) - nS = (0 + Do) -n5  on Y.
(O‘SJC + Aaf;) . n?’ =0 on Y., (4.25)

The microscopic VCFEM module is executed for two purposes in each increment of the macro-
scopic module. The first is to evaluate the microscopic stress increments Ao from given values
of the macroscopic strain & at the beginning of the step, and its increment A&. The second is to
calculate the instantaneous homogenized tangent modulus Egk[ at the end of the increment in the
macroscopic module. The details of the calculation of microscopic stress and homogenized tangent
modulus calculation procedure are given in Ghosh et. al. (1995,1996). The Voronoi cell finite ele-
ment module is incorporated in a macroscopic analysis module with the interface being created by
the homogenization procedure. The macroscopic analysis is performed using a displacement based
finite element code with plane strain QUAD4 elements. Numerical integration in these elements
uses one-point reduced integration and hourglass control (see Koh and Kikuchi (1987)). Material
constitutive relations at each integration point of elements are obtained from homogenization of
microscopic VCFEM results. Microscopic stresses o;,are averaged to yield macroscopic stresses
%,;. The microscopic VCFEM is also invoked to evaluate the homogenized elastic-plastic tangent
modulus Ef by applying unit components of macroscopic strain. :

4.5 Computational Subdomain Level-0 in the Hierarchical Model

Level-0 corresponds to macroscopic regions (S C Qara7(p)) in figure 4.2a, where deformation vari-
ables like stresses and strains are relatively uniform in their macroscopic behavior. Scale effects are
negligible and local constitutive relations may be derived from postulates of zero RVE volume in
the limit and periodicity. It is assumed that macroscopic analyses with homogenized constitutive
relatio .s are sufficient for these regions. Anisotropic constitutive relations with varying param-
eters cre developed for continuum analysis of heterogeneous microstructures with elastic-plastic
constituent phases. To account for details of microstructural morphology, the constitutive model
is based on two scale analysis using the asymptotic homogenization method and microstructural
analysis by VCFEM. A contimium constitutive model can greatly enhance computational efficiency
over two-scale analysis.

4.5.1 An Elastic-Plastic Constitutive Model

Various continuum constitutive models have been proposed. based on unit cell ;,-na.lyses of com-
posite and porous microstructures. One parameter plastic potential functions with assumptions of
anisotropy have been introduced in Sun and Chen (1991) and Xie and Adams (1995) for composite
materials, where the parameter is determined by least squares fitting of unit cell characteristic
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responses. Bao et. al. (1991) have used the same hardening exponent for the composite as for the
matrix material. A widely used continuum constitutive model for porous materials is that of Gurson
(1977), which has been modified by Tvergaard (1982) with unit cell analysis to incorporate the ef-
fects of void growth and coalescence. Besides the limitations in representing actual microstructural
heterogeneities, a number of these constitutive models do not adequately accommodate variations
in constitutive parameters with evolving deformation and do not account for post-yield anisotropy.
Terada and Kikuchi (1995) have tried to overcome this by using the asymptotic homogenization to
develop an extensive numerical response database in the strain space. Instantaneous overall com-
posite properties are determined from discrete values of homogenized stress-strain values at points
of this database. This approach, however leads to huge database to cover all possible deformation
paths and requires solving an inordinately large number of RVE boundary value problems. Fish et.
al. (1997) have used the idea of transformation strain fields, introduced by Dvorak and Benveniste
(1992), to develop a two point averaging scheme based on the mathematical homogenization theory
with piecewise constant transformation fields. However, approximating the eigen-strains with low
order polynomial functions may not be able to fully account for large gradients in stresses and
strains between phases.

Motivated by two considerations, a piecewise continuous elastic-plastic constitutive model with
an anisotropic yield function is developed in this work. The first is an accuracy consideration,
in that it should account for the microstructural morphology, e.g. spatial distributions, shapes,
sizes and properties of the individual phases, phase interactions, as well as the evolving stress and
strain fields. This can be achieved if the model is developed from detailed finite element analyses
of the RVE (e.g. VCFEM analysis), subjected to a wide variety of loading conditions. The second
is an efficiency consideration, since the creation of a prohibitively large numerical database with
a very large number of numerical experiments is of no consequence. The efficient development
of a constitutive model, accounting for underlying evolution of state variables, is accomplished by
generating piecewise continuous model parameters from data in a discretized strain space (see figure
1.4). Numerical data points in the strain space are systematically created through a sequence of
computational RVE analyses subject to an ordered set of macroscopic strains and strain paths. The
strain space in figure 4.4 is discsetized into cubic elements. each containing 32 nodes or data points.
From the computational RVE analysis, constitutive parameters like yield function coefficients and
plastic work are generated for each nodal point. The constitutive relation at any point in the
strain space are then obtained by interpolating nodal values using conventional shape functions.
Elastic-plastic models developed in the ensuing sections are for plane strain assumptions.

Linear Elasticity

Orthotropic homogenized elastic material properties are ubtained by asymptotic homogenization
in conjunction with the VCFE analysis of the composite and porous microstructures from equation
(4.19) as explained in Ghosh et. al. (1995). With plane strain assumptions, three separate VCFE
analyses are conducted, each corresponding to an independent component of the macroscopic strain

{erz, €yy, ezy}. The orthotropic elasticity tensor is stored for macroscopic analysis.
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4.5.2 Elasto-Plasticity with Anisotropic Yield Function

The inclusion phase in composites are assumed to be linear elastic, while the matrix phase is
assumed elastic-plastic for both composite and porous materials. In plane strain modeling, an
assumption that the total plastic strain in the out of plane or ‘third’ direction is zero, is made.
The yield function can then be described in terms of the macroscopic in-plane stress components
(T2, Zyy and Ezy). The yield function for porous and composite are written using Hill's 1948
anisotropic yield function (see e.g. Hill (1965), Xie and Adams (1995)) in conjunction with the
hydrostatic stress dependent models of the Tvergaard-Ciirson (see e.g. Gurson (1977), Tvergaard
(1982)) as:

o= (4.26)

Y)?(Wp) 2 Y(W,)
where e;z, €yy, €zy are the macroscopic in-plane strains, C(ezz, ey, €zy, Wp) is a strain dependent
yield surface parameter and Y;(W;) is the flow stress in shear. For the composite materials the
dependence of pressure on yielding is deemed negligible and the hydrostatic stress coefficient H
is ignored. Coefficients C(ezz, eyy,€zy, Wp), Y7(Wp) and H are determined from computational
experiments detailed next. The increment of plastic strain is obtained from the yield function ¢
by using the associated flow rule for hardening materials, i.e. ef] = /\3‘2%.

Coefficient Evaluation

A. H and Y;(W,)

Computational exercises indicate that the variation of H with increasing hydrostatic loading is
not significant. It is therefore assumed to be a constant for all load histories. This assumption is
consistent with the Tverggard-Gurson models, where H is determined in terms of the initial void
volume fraction. The constitutive parameters H and Y;(W)) are evaluated in a coupled manner by
solving the microstructural RVE boundary value problems with two distinct loading conditions viz.
(i) biaxial tension loading (zz = Zyy = Lhyd, Lzy = 0) and (ii) pure shear loading (¥zy = Zsa,
Tz = Zyy = 0). For load condition (i), equation (4.26) becomes: :

4
_ ' Lhyd _
®(Thyd, Thyd» 0, Wp) = Hcosh k\/ﬁ v, (W,,),) 1=0 (4.27)

and for load condition (ii), it becomes:

352, 3 %2
= +H-1=0 or Y((W,)= sh 4.28
YZ(W,) 7 428

®(0,0, Z4n, W)

The values of H and Yy(W,) are determined iteratively from equation (4.28) and further validated
against equation (4.27). The steps are as follows.

1. Solve a macro-micro boundary value problem with RVE homogenization, with incremental
pure shear loading. Obtain macroscopic plastic work by averaging the the microstructural
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plastic work ( Wp = VpTlvE Ja o,je'fde ) and plot the macroscopic shear stress as a function of
plastic work Wp.

2. Assume a starting value for H (e.g. 3xfo as in Gurson (1977), Tvergaard (1982) and evaluate
Y¢(W,) from equation (4.28).

3. Solve a pure macroscopic boundary value problem with incremental biaxial loading, using the
homogenized elastic-plastic constitutive relation and associated flow rule with yield function

(4.26).
4. Plot the ez — Lpyq and eyy — Lpyq curves for the entire history of biaxial loading.

5. Solve a macro-micro boundary value problem with RVE homogenization with the same in-
cremental biaxial loading as in the previous step. Plot the Zyyq — ez; and Zpyq — €yy curves
for the entire history of loading.

6. Compare the results of steps 4 and 5. If the two curves from both methods are within a preset
tolerance everywhere, then the process is terminated and value of H in step 2 is accepted.
Otherwise. the entire sequence is repeated with a different value of H.

B. C(e,’], Wp)

The coefficient C in equation (4.26) is found to vary considerably with evolution of plastic de-
formation and examples of its variation with straining and plastic work are shown in figures 4.5.
While it is assumed to be a function of the total strain and plastic work, its dependence on load
history is assumed to be negligible. In the discretized strain space of figure 4.4, the value of a piece-
wise continuous C at any point may then be obtained by interpolation from nodal values according

to
32

C(erz, eyy, ezy, Wp) = Z CQ(WP).LVQ (612, eyy, e:ry) (4-29)

a=1

where C, are the nodal values and N, are shape functions for a 32-noded brick element.

Generation of Discretized Strain Space and Nodal Parameters

The nodal values of macroscopic stresses (Zzz, Zyy, Lry) and the corresponding plastic work W), are
first evaluated at each nodal point in a subspace of the e, — ey, — ez, space by solving incremental
macro-microscopic boundary value problems with VCFEM and asymptotic homogenization. In
this process, macroscopic strain increments are applied to the RVE subjected to periodic bound-
ary conditions (see e.g. Ghosh et. al. (1996,1997)). Strain increments are applied along a radial
line in the strain space, such that a constant ratio between strain components is maintained, i.e.
Aeyr : Aeyy : Aegy = 1:tanf @ (1 + tan?0)tand, where 6 and ¢ are the angulag coordinates in
the strain space of figure 4.4. The flow stress Yy(W,) at each node in figure 4.4 can be obtained
from the shear stress-plastic work plot and equation (4.28). From the values of macroscopic vari-
ables (Z;z, Zyy, L2y, Y7(Wp)) at a node corresponding to the end of an increment, the coefficient
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Clezz, eyy, €zy, Wp) is calculated using equation (4.26).

From the symmetry conditions, only a quarter of the ez — eyy — €zy strain space is considered
for loading such that 0° < 6 < 180° in the ezz — eyy plane and 0° < ¢ < 90° outside of this plane.
This is indicated in figure 4.4. This chosen subspace of the strain space is divided into 16 cubic
brick element with 32 nodal points each. The location of elements in the strain space are selected
to optimally account for the variations in C. These variations in C with the coordinate angle
6 (location in the e;; — eyy plane) and the plastic work W, for the different microstructures are
plotted in figure 4.5. The parabolic form of C in figure 4.5a is consistent with the quadratic term
(22 — Zyy)2 in the yield function. The minimum values occur near § = 135° corresponding to a
pure deviatoric state. The coefficient subsequently increases to account for the increase in plastic
work in the yield function ®. In figure 4.5b, the coefficient C as a function of the plastic work,
which corresponds to the radial direction in the strain space, is plotted. The value of C stabilizes
beyond a value of the plastic work, which is used as the outer boundary of the strain space envelope

in figure 4.4.

4.5.3 Numerical Implementation of the Constitutive Model

The elastic-plastic constitutive model for composite and porous materials is derived from the
anisotropic yield function (4.26) with associated flow rule and isotropic hardening. In an incre-
mental form, the stress increments AZ;; are related to elastic increments of strains {Qeg — Aeﬁ,)
admitting additive decomposition, as ) :

ATy = Efly(Den ~ Defy) (4.30)

where Egkl is the homogenized elasticity tensor. Using associated flow rule, components of the

plastic strain increment are obtained as:

0%
Dl = DA 3z, (4.31)

Elimination of the flow parameter A\ from the above equations results in the two equations

od od od od
p [ 92 ) - A p - _
Lel (62yy) Ae’y’y (32:::) 0 , Qef, (8):”) Ae‘;y (6211) 0 (4.32)

These equations are solved using the backward Euler integration method, with gradients evaluated
at the end of the increment. With known increments of strain, the resulting set of equations (4.32)
together with the yield function (4.26) are solved iteratively by using the Newton-Raphson method.
The stress increments are obtained by the following steps.

1. Initialize values of ATz, AZyy and AX4y. -

2. Calculate the gradient (3‘%%) of the yield function and solve for the increments of plastic
strain Aef,, Oely, and Aef, from equations (4.30) and (4.32). Update the stresses and
plastic work using the relation AW, = Lz Aeh, + ZyyNel, + Taylely,.
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3. If ® < tol; and correction to plastic strain increment éef]- < tolp, where tol, and toly are
prescribed tolerances, then stop. Otherwise go to step 2.

The parameter-C is then obtained from the interpolation equation (4.29).

~ 4.5.4 Numerical Examples with the Continuum Constitutive Model

The elastic-plastic constitutive model is validated by comparing the results of macroscopic numerical
simulaiions with those generated by macro-micro scale analysis using asymptotic homogenization.
Examplcs are conducted for both composite and porous materials with different microstructure
morphologies, viz. different shapes, sizes and spatial distributions of the heterogeneities.

Analysis of Composite Microstructures

Six microstructural RVE’s of 20% V; Alumina-aluminum composite with Alumina fiber in alu-
minum matrix. as shown in figure 4.6, are analyzed. The RVE's are classified as:

faj: Square edge pattern with a circular inclusion (C1)

(b): Square edge pattern with an elliptical inclusion (aspect ratio £ =3) (C2)

(c): Random pattern with 25 identical circular inclusions (C3)

(d): Horizontally aligned random pattern with 25 identical elliptical inclusions (C4)

(e): Randomly oriented random pattern with 25 identical elliptical inclusions (C5)

(f): Random pattern with 17 random shape and size inclusions (C6)

The material properties for the elastic Alumina fiber are:

Young's Modulus (E.)= 344.5GPa, Poisson Ratio (vc)= 0.26;

and for the elastic-plastic Aluminum matrix are:

Young's Modulus (En)= 68.3 GPa, Poisson Ratio (vyn)=0.30, Initial Yield Stress (Yp): 55 MPa,
and Post Yield hardening law: geqy = Yo + 2.08€2:,,.

The RVE's are subjected to four different types of loading viz.

e L1: Dure shear loading with increments(AZ;; = AX,, = 0. ALy = AX)

e L2: Uniaxial tension loading with increments (AZ;; = AS. ATy, = Ay =0)

e L3: Biaxial tension loading with increments (AL.; = AL, = AL, Ay = 0)

e L4: Biaxial tension-compression loading with increments (AZ;; = —AZyy = AL, AXy =0)

The stress-strain response of the six composite microstructural RVE's with the four loading
conditions are conducted and the results for simple tension (L1) are depicted in figure 4.7. The
results by the constitutive model and two-scale asymptotic homogenization approach are generally
found to agree very well for the entire range of loading upto fairly high level of straining. The
only discrepancy is found with the biaxial tension loading condition (L3), for which the devia-
tion strains are shown in table 1. However the deviations occurs at high strains levels, for which
the stresses are nearly twice the matrix yield stress. It is important to note that the deviation
of continuum model response from the two-scale asymptotic homogenization response can be used
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as a signal for switching from the former to the latter type of analysis in a multiple scale simulation.

As an example of a structural analysis with the two approaches, a square plate with a square
hole is solved with tension loading on two opposite faces. A quarter of the plate with symmetry
and loading conditions is shown in figure 4.8a. A total traction of 55 MPa is applied in 10 equal
increments. The material is a 20 % V; Alumina-aluminum composite with the microstructural
RVE consisting of 15 identical circular inclusions dispersed randomly in the matrix (figure 4.8b).
The material properties are the same as in the previous example. Comparison of the results are
made through contour plots of the macroscopic stress Lz (shown in figure 4.9) and macroscopic
plastic work W, (not shown,. The figures reveal that at all locations the difference in the two
approaches is less than 1%. However, the computational efficiency of the macroscopic analysis
with the continuum constitutive model is far superior than the two scale analysis. The scale up
in efficiency for this problem is approximately 75000%, and is therefore very desirable when only
macroscopic results are of interest.

Analysis of Porous Microstructures

The six microstructural RVEs are analyzed again for porous materials, with voids replacing the in-
clusions in figure 4.6. The material considered is an aluminum alloy with 20% void volume fraction
and the following elastic-plastic properties: '

Young’s Modulus (E,,)= 68.3 GPa, Poisson Ratio (vm)= 0.30, Initial Yield Stress (Yy)= 55 MPa,
and Post Yield hardening law: geqy = Yo + 2,08e§f7v. The same four load histories (L1,L2,L3,L4)
are applied. An important difference between the composite and porous microstructures, is that in
the latter plastic strain localization in small regions is a common occurrence depending on the void
morphology and the nature of loading. Such nonhomogeneous distribution of plastic strains is a
major source of discrepancies between responses by the two approaches and act as ‘limiters’ for the
range of application of the continuum model. Microstructures with homogeneous and nonhomoge-
neous distributions of plastic strain are shown in figure 4.10. For the microstructure V1 (square
edge pattern with a circular void) the strain distribution is quite uniform in pure shear loading,
while for the microstructure V2 (square edge with an elliptical void) there is intense localization
with narrow ligaments. Consequently the continuum model ceases to be effective.

As in the case with composites, the main challenge for the homogenized constitutive model
is encountered during simulations with biaxial tension loading, i.e. (AZzz = ALy = ALYy and
ATy = 0). The first term in the yield function (4.26) drops out for this loading and the model
delivers the same amounts of plastic strains in the z and y directions. Due to the lack of anisotropy
in the hydrostatic term in the yield function, the continuum model is effective only for those
microstructures that exhibit near-isotropic plastic behavior for this loading. Microstructures V2
(square edge with elliptical void) and V4 (horizontally aligned elliptical voids with random spatial
distribution) shows very different strain responses for each direction with biaxial 16ading. Thus the
continuum constitutive model is largely ineffective for these RVE’s. The microstructures V5 (ran-
domly oriented identical elliptical voids with random spatial distribution) and V6 (random spatial
distribution with random shape and size) also show significant plastically induced directional effects
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and the constitutive models are therefore restricted to the elastic range. The list of performance
and strain ranges of all the microstructures with the different loading are given in table 2. The
microstructures V1 and V3 exhibit relatively isotropic responses and yield satisfactory agreement
between responses by the constitutive model and the two-scale asymptotic homogenization. Com-
parisons of stress-strain responses for biaxially and uniaxially loaded RVE'’s are made in figures
4.11. These show very good agreement. The RVE's V2 and V4 exhibit intense localization early
on in the straining, while the RVE'’s V5 and V6 exhibit marked anisotropy with biaxial loading.
Plastic flow predictions for these RVE’s with the contin::um model are therefore not reliable.

4.5.5 Level-0/1 Mesh Enrichment by h-Adaptation

The transition between various levels in this model is augmented by an adaptive mesh refinement
involving element subdivision or h-refinement in the level-0 and level-1 regions. This local mesh
enrichment is intended to serve two purposes, viz. (a) to identify and reduce discretization error
in the computational model and (b) to reduce modeling error by zooming in on regions of evolving
localization due to microscopic non-homogeneity. The latter is also effective in bridging the gap
between the macro- and micro- scale elements by successive element refinement in critical regions,
as shown in figures (4.2a and 4.16). The adaptive h-refinement has been extensively discussed in
literature (see e.g. Zhu and Zienkiewicz (1988,1992), Melosh and Marcal (1977), Demkowicz et. al.
(1985), Bass and Oden (1987)) and the latest advances in adaptive methods in mechanics have been
presented in a compilation by Ladev‘eze and Oden (1998). Within the category of h-adaptive pro-
cedures. two methods, viz. the mesh enrichment or refinement methods (e.g. Zhu and Zienkiewicz
(1988), Bass and Oden (1987)) and mesh regeneration methods (e.g. Zhu, Hinton and Zienkiewicz
(1993), Paulino et. al. (1999)) have evolved. While the mesh regeneration methods have been
preferred for their relatively higher efficiency, the enrichment method is deemed more suitable for
the present work. This is due to the fact that the regeneration method alters element locations
with respect to the underlying material RVE and will necessitate cumbersome mapping.

Following procedures outlined in Bass and Oden (1987), the mesh refinement procedure entails
subdividing each quadrilateral QUAD4 element into four smaller elements, thus adding four new
nodes on the boundary and one in the center. For compatibility with the displacement fields on the
boundary of larger adjacent elements, linear constraint relations are imposed on the new boundary
nodes of the subdivided element. A static condensation process is then used to eliminate the explicit
inclusion of the new nodes in the global stiffness and load vectors (see Bass and Oden (1987) for
details). Numerical integration in each QUAD4 element after adaptation is performed by one point
reduced integration with hourglass control (Koh and Kikuchi (1987)).

4.6 Computational Subdomain Level-1 in the Hierarchical Model

The level-1 regions (2 C QMAT(,,)) in the computational domain are intended as ‘swing’ or ‘tran-
sition’ regions, where microscopic information in the RVE is used to decide whether microscopic
computations are necessary for these regions. They are identified by locally high gradients of macro-
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scopic variables e.g. stresses, strains strain energy etc. that are indicators of imminent damage
evolution or localization in the microstructure. Computations in these regions are still based on
assumptions of macroscopic uniformity and periodicity of the RVE. Concurrent with macroscopic
simulations, computations are necessary in the the microstructure to monitor the initiation and
growth of damage. The RVE response for level-1 elements is explicitly calculated using asymptotic
homogenization and VCFEM analysis. The computations in elements belonging to the level-1 do-
main undergo a sequence of finite element analyses as follows.

(a) Microstructural analysis of the RVE, subjected to the sequence of unit macroscopic strains or
increments with periodicity boundary conditions to generate homogenized tangent modulus (Egk,).

b) Macroscopic analysis of the structure using (E,,) of step (a), to evaluate macroscopic vari-
P y g 17kl P P
ables e.g. stresses and strains due to applied loads.

(¢) Microstructural analysis of the RVE at each sampling point (e.g. integration point) of macroscopic
elements. with actual macroscopic strains and increments obtained from step (b) and periodicity
conditions on the RVE boundary. Microscopic stresses and strains (o€, €¢) are thus calculated in
the RVE's of each element. For linear elastic constituent phases, the microstructural stress recovery
process can be achieved by using a linear combination of solutions with unit strains from step (a).
However, explicit solution of nonlinear equations are required for problems with nonlinearity. This
is executed in an iterative manner in this work.

Computational requirements of elements in this level are considerably higher than that for level
0. At each integration point in the macroscopic computational mesh, a complete microstructural
analysis of the RVE problem is done several times (at least 3 times for step (a) and once for step {c)" -
in the present case) within each iteration loop. Thus the level-1 elements are computationally more
expensive compared to level-0 elements. It is therefore important to design robust criteria to avoid
redundant element transition from level-0 to level-1. It is also critical that this level be discontinued
once the microstructural damage or instability evolved beyond pre-determined threshold values.

4.7 Computational Subdomain Level-2 in the Hierar_chicél Model

Level-2 regions (figure 4.2b) are classified as those with severe microstructural nonuniformities in
the form of evolving damage. This results in loss of statistical periodicity of the assumed RVE and
these regions may be identified with Q7 47(np) in equation (4.5). In the computational model, the
level-2 elements (2 C Qa1 471(np)) materialize from the microstructure of level-1 elements. It is as-
sumed that prior to this transition, the level-1 elements have been refined to reach sufficiently high
spatial resolution. In @, the macro-micro model of level-1 switches to a completely microscopic

model.
=

The method of generating the level-2 microstructure in each element is illustrated in figure
(4.12). An extended microstructure is first created by repeating RVE's in succession, to cover the
entire region of the macroscopic level-1 elements in transition to level-2. In equation (4.7), a local
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non-periodic region is created as : y
MAT sl
T (4.33)

where Yk" corresponds to the RVE’s in a periodic domain, adjusted for microscopic evolution. This
is then overlayed by the macroscopic elements to accurately encase the level-2 region with clearly
delineated boundaries. Each level-2 element now contains a heterogeneous material distribution
(Y¢) that is defined as the intersection of the non-periodic material region Y,CM"‘T("” " and the
element domain Qf,

Ye = yMAT®) g (4.34)

This region is subsequently tessellated into a mesh of Voronoi cell elements (figure 4.12b). Trac-
tion continuity between level-2 microstructural region and neighboring level-0/level-1 elements is
incorporated through a layer of transition elements.

4.7.1 Damage Criterion for Particle Cracking in Level-2

The level-2 VCFEM modeling consist of brittle reinforcing particles and a ductile matrix material.
For the brittle particulate materials, microstructural damage initiation is assumed to be governed
by a maximum principal stress based criterion. In this criterion, a crack is initiated when the
maximum principal stress in tension exceeds a critical fracture stress ¢ at a point. In the compu-
tational procedure, complete particle splitting is assumed to occur in the form of an elliptical void,
normal to the principal direction, as soon as the principal tensile stress reaches ™. In the case
of particle splitting, the crack tip extends nominally into the matrix. In the incremental compu-
tational procedure, more than one point may exceed the critical " value during increment. The
location of a single crack is determined by a weighted averaging method as:

$(z.y) of(z.y)

Z 1:7 cr Z Y T

Tdamage = ac&‘y) ’ Ydamage = a"(z:,y) v {Uf(.’L‘, y) 2 UCT] (4.35)
Z gcr Z gcr

where o$(z,y) corresponds to all values of maximum tensile principal stress larger than ¢ in the
particle. The crack is oriented at right angles to the principal stress directions at (Zdamage’ Ydamage)
and extends to the interface on both sides.

4.8 Coupling the Levels in the Hierarchical FE Model

While level-0 elements (Ej € Qo) and level-1 elements (E;; € Q1) are coupled naturally through
the familiar assembly process, the interfacing of level-2 (Ej; € {12) elements with either of the first
two requires more attention. The mismatch in the number of boundary nodes in these elements
necessitate the introduction of transition elements (E,. € 2). acting as buffer zones as shown in
figure 4.13. Both Ej; and E;, elements employ VCFEM for setting up the element Stiffness matrices
and load vectors. The entire computational domain is thus comprised of

N N N, .
Q¢ = {Qup Uy Uz : Yo = UNS Erg; Q1 = Upt i Qup = Upl Eig UURY, Eur}
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for which the nodes are differentiated as (see figure 4.13):

(i) (nd*¥) or internal level-2 Voronoi cell element nodes that are not on any interface or boundary,
(ii) (nd'?/?) or Voronoi cell element nodes on the Ejp-E interface,

(iii) (nd®/*") or Voronoi cell element nodes on Ejp-Eyr interface, _

(iv) (nd'®Y*) or nodes on Ey;-E;- interface that belong to Ejo and Ep elements,

(v) (nd*) or Voronoi cell element nodes on Ejg1-Ey, interface that do not belong to Eyp and E
and need to be statically condensed. In an incremental analysis for elasto-plasticity, the principle
of virtual work for the computational domain at the end of the n — th increment may be written
as a scalar valued function G in terms of variables at different levels as:

Odu;
n+1 — (" L —- Y
G ouse) = [T+ Su) I fudd
+ z,,-muam%dg— / fibuidQ
ot 9z; o
6 .
+ / o (u” + Aw) L aq - / fibu:dD
o 9z Ty
- /wti&u,-dr-/n+lti5uidr—/n+;,-5u,-dr (4.36)
rlO rll rl? .

In an iterative solution process with the Newton-Raphson method, a consistent linearization by
taking the directional derivative of G™*! along incremental displacement vector Au, yields the
tangent stiffness matrix. For the i — th iteration, the assembled equations have the following

structure. '
KI0/110/1 plo/142 t AU/ t AFI0/1 ¢ ,
Ki200/1 gl AU2B [ T\ AFR (4.37)

Here AU'/! corresponds to displacements at nodes (nd’o/ ') that belong to elements Ejg and Ej
in the computational region €, U €, as shown in figure 4.13. It should be noted that they also
include nodes at the interface of elements Ejo/E;; and elements Ey,. The displacements AU 2B op
the other hand corresponds to nodes (nd*¥/*") on the interfaces of elements E, and elements Ej5 or
to nodes (nd'?/?) on the interfaces between two Ej; elements. Contributions to the stiffness matrix
[K] and load vector {F} for elements in €, U, may be obtained as

N ¢
(Ko H40/1y; =/ ONE 9%, ONg

dQ?
apriunp-t 06 dew 0z
1

G
s 40
sz

FO/hy = -chn+/
( 1a ) fl a r;:;“ur;‘:

NGdr - Tij(un + Au')

/n;'o“un;'l*‘ ap-toapt!
. B correspond to the node numbers and N, are the shape functions of macroscopic elements.
For the elements E, and Ej; belonging to ,, contributions to the stiffness matrix and load

vectors are obtained by VCFEM calculations, together with static condensation. The transition
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element facilitates continuous variation from microscopic to macroscopic elements without jumps
or discontinuities. On the Ejg/;-Etr interfaces, this is accomplished by constraining displacements
at nodes nd*¢ to conform to displacement interpolation of the adjacent Eyy or Ej; elements. The
constraints at-the nodes nd*¢ are applied in terms of displacements at nd®/t ag

{aU*} = [Ql{av?V/r} (4.38)

where [Q)] is the constraining matrix. For bilinear QUAD4 level-0/1 elements. each row of [Q]
consists of the inverse of the distance of the constrained node to the corner nodes. The interfaces
with the Ej, elements, i.e. the Ejp-Ey interfaces are treated in the same way as E|s-E}, interfaces.

The displacements AU"B in equation (4.37) correspond to those at the boundary nodes (nd“?-/z‘
nd?t", nd"°"*" and nd*¢) of level-2 elements that contain the microstructural VCFE model. To
account for the contribution of the internal nodes (ndm), it is therefore necessary to use static
condensation and recovery process for representing the VCFEM displacement solutions at the

internal nodes AU in terms of the displacements at boundary nodes AU?B | where
AUI‘://S I 000 AU
AU 0 I 00
2B \| _ 12/tr ,
{ave? )= AU 001710 ﬁgzomr (4:39)
AU 0 00 Q

where [I] and [Q] are the identity and constraint matrices respectively. In a VCFEM solution
process the stiffness matrix and the load vector may be partitioned accordingly as

KI2BA2B  gl2BI2I AU2B AFI2B : '
K212B  glal il AU (T ApR (4.40)

Static condensation of the internal degrees of freedom yields

HKQB.IQB] _ [Kl28.l21] [Km'.m}‘l [Km,zw” {AUIQB} _ {AFzQB}_[Kzzs,zzl] [Kzzz,mJ‘l {AFIEI}
. 4.41)
These stiffness matrices and load vectors are then used in the assembly process of equation ((4.37).

4.9 Adaptation Criteria for Various Levels

It is evident that appropriate criteria need to be established for transitioning the computational
subdomains from one level to another. In addition to level transitions, element refinement by -
adaptation is also executed in level-0 and level-1 regions for reducing discretization error, identifying
regions of high solution gradients and zooming in to reduce the scale gap between?nacroscopic and
microscopic elements. The criteria used for element refinement and level transition are delineated
below.
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e Level 0/1 h-adaptation may be executed based on an error measure may be defined as
Ee = ||f(u— up) (4.42)

where u is the true solution, uy, is its finite element approximation, f is any appropriate function
of deformation e.g. energy, stresses, strains etc., and || - || denotes a norm of the function. Work
on h-method of mesh refinement (see e.g. Zhu and Zienkiewicz (1988), Melosh and Marcal (1977),
Demkowicz et. al. (1985)) have proposed various forms of f and norms to optimize the compu-
tational effort and improve reliability. In this work, elements are subdivided based on an element
level parameter defined as

.||f (un)ll
E = qt ——— : 4.43
where (E.)¢r corresponds to a threshold element parameter above which the element needs to be
refined and qi is a prescribed quality index. ||f(un)|l = T NE | f(un)]le is the sum of element norms

of any function for the entire computational domain and NE is the number of elements. Such error
criteria is conventionally used to equi-distribute errors due to discretization by mesh refinement for
relatively well behaved problems. However for mesh dependent problems with inherent localizations
or singularities in the solutions, the above criteria may be used for signaling steep gradients in the
solution variables and may be used for increasing the resolution in the region of high local gradients.
In this work ||f(up)|le is taken to be the maximum difference in plastic work with neighboring
elements. i.e.: ‘

I f(un)lle = Maz|( / Ti;€,d)° — /El]’de Jadjacent|

with a value of q1=1.5 .

e Level-0 to level-1 transition of Ejy elements takes place in accordance with criteria based
on macroscopic variables e.g. (X, e) in the continuum model that are related to critical micro-
scopic variables. Additionally, this transition is activated when the continuum level model in section
1.5.1 starts to digresses considerably from the results of two-scale homogenization. Different criteria
are used for composite and porous materials. ’ :

A. For composite microstructure with inclusions:

(Zrz + Zyy)
2

Here T; is the maximum principal stress in Ejg, ¢ is a critical stress that is a pre-determined
fraction r of the critical fracture stress (o") for microstructural inclusions. The fraction r is
selected to be % 3 in this study. The second condition is established since the earliest digression from
the homogenization results is observed for biaxial loading. and Zf established from the results of
section 4.5.4.

B. For porous microstructure with voids: Strain based criteria are deemed more lmportant in the
case of damage in porous materials and hence transition is activated when

()2 LT =r*x0“ and/or > (4.44)

@) 2 (@)7 =7+ (@) andjor Tl g (4.45)
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where € (= ,/ %efjefj) is the macroscopic effective plastic strain in Ejp and (€7)" is a pre-determined
fraction r of a suitably assessed high microstructural plastic strain (e?). Again e is established
from the limiting values of biaxial strain in section 4.5.4.

e Level-1 to level-2 transition of E;; elements occur when a sufficiently high spatial resolu-
tion is attained by h-refinement and when the RVE is deemed to be on the verge of significant
damage evolution. The adaptive criteria, which monitor the transition from elements E; to Epp
are prescribed in terms of topological evolution of microscopic damage as:
A. For composite microstructure with inclusions:

NDP

Raamage = NP > Rer (4.46)
B. For porous microstructure with voids:
ADR ‘
Raamage = AR > Rer (4.47)

where Rggmage is the ratio of the number of damaged inclusions (NPD) to the total number of
inclusions (NP) for composites. For porous microstructures, it is the ratio of the damaged area
corresponding to regions which have high plastic strains to the total RVE area. R is a prescribed
critical ratio and varies from problem to problem.

4.10 Numerical Examples with the Adaptive Multilevel Model

Numerical examples are solved to understand the effect of structural geometry and microstructural
morphologies on the macroscopic and microscopic responses. In all examples, the inclusions are
assumed to be linear elastic which can crack by the principal stress criterion and the matrix is elastic-
plastic. In the first example, a RVE consisting of a single circular inclusion is modeled by level-1
and level-2 elements under applied uniaxial tension loading. In the first case the Ej; macroscopic
element is coupled with the microscopically periodic RVE by asymptotic homogenization, while in
the second case. the tension load is directly applied on one edge of the Voronoi cell element Ej model
of the RVE. The loading is continued beyond the level of inclusion cracking .This is represented
by the loss of stress carrying capacity in the averaged stress-stain plot of figure 4.14a. Though the
response is similar in the initial elastic phase, it diverges with the onset of plastic flow. The damage
occurs earlier in the level-1 element due to the additional constraint of periodicity. The contour
plots of inclusion maximum principal stress, normalized by the critical stress ¢, are compared
at a macroscopic strain 2.1% in figure 4.14. This is just before cracking by the level-1 model. A
considerably lower stress level is seen for the level-2 model. Such over-estimation of stresses with
periodicity boundary condition near free boundaries necessitate the use of the proposed multi-level
models.

('

4.10.1 Effects of inhomogeneity size (Scale effect)

Neglecting scale effects, that reflect the actual size of microstructural constituents, is a charac-
teristic of homogenization with assumptions of statistical periodicity of a vanishingly small RVE.
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While elements Ejp and Ej; conform to this restriction, the level-2 elements Ej, in this work depict
the actual size of the microstructure through the multi-level coupling and hence scale effects prevail.

In this example the effect of particle or void size on the evolution of damage is investigated.
The two different microstructural RVE’s considered in figure 4.15b (i and ii) have identical dis-
tribution (square edge) and same particle or void area fraction of Vy = 20%. But the RVE sizes
are different in that, the size of the smaller RVE (i) is 0.5mm x 0.5mm while that of the larger
RVE(ii) is Imm x lmm. The macroscopic structure is a square plate with a square hole. for which
the initial level-0 mesh with dimensions is shown in figure 4.15a. Only a quarter of the plate is
modeled from symmetry considerations. The smallest size of macroscopic element allowed in this
analysis by h — adaptation is set to lmm. Thus the Ej; elements contain only one element in the
VCFEM model for the larger RVE(ii) but four elements in the VCFEM model for the smaller RVE
(i). The material properties for both composite and porous materials are as follows.

Aluminum matrix (Elastic-Plastic): Young's Modulus (E,;)=68.3 GPa, Poisson Ratio (vy,)=0.30,
Initial Yield Stress (Yp)= 55 MPa, and Post Yield hardening law: gegy = Yo + 2.085‘6’5”

Alumina particle (Elastic): Young’s Modulus (E.)= 344.5GPa, Poisson Ratio (v¢)= 0.26, Critical
particle cracking stress (0 )=0.3GPa

The load is applied in 20 equal increments upto a total displacement of 1 mm as shown in figure
4.15a.

For the composite microstructures, figure 4.16 depicts the evolved macroscopic and level-2 com-
putational domains at the end of loading stages. The level-0, level-1, level-2 elements are shown in
white, grey and black respectively for the adapted macroscopic mesh in 4.16a and b. The evolution
of the levels and mesh with h-adaptation is provided in table 3. The effect of the microstructure size
becomes more pronounced with increasing deformation. A larger level-2 domain (29 macroscopic
elements) with a smaller level-0 domain is evidenced for the smaller RVE (i). The effect of RVE size
on the pattern of particle cracking is very significant. The level-2 region shows 24 cracked particles
for the RVE (i) as opposed to 6 cracked particles for the RVE(ii). The path of evolution of cracked
particles is quite different for the two models. For the RVE(ii), the aggregate microscopic cracks
is found to propagate perpendicular to the macroscopic loading direction and all the microcracks
have the same orientation as the chain or macrocrack. For the smaller particles in RVE (i), the
chain of microcracks or the macrocrack is observed to move at 45° to the loading direction with
individual microcracks predominantly at 90° to the loading direction.

The contour plots of macroscopic and microscopic plastic strain distribution at the final loading
stage are shown in figures 4.17 and 4.18 for the two microstructures. The macroscopic strain distri-
bution for both models shows higher strain concentration at the corner of square hole with increased
loading. While the macroscopic strains are not very different for the two RVE'’s, significantly larger
local plastic strains are seen in the level-2 microstructure of RVE (i). A better fepresentation of
this difference is seen in the graphs of figures 4.19 and 4.20. The macroscopic (averaged) stress Yz
history at the critical corner in figure 4.19 does not indicate significant difference and hence exhibits
little scale effect. The stress drops in this figure correspond to particle damage. The histogram
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of the evolution of particle cracking however shows a considerably different pattern and a much
higher rate of cracking for RVE (i).

The same problem is solved for porous microstructures with the two sized RVE's, but with a
total displacement of 0.4mm. The evolved levels and meshes in the computational models at the
end of loading are shown in figures 4.21a and b and the corresponding level-2 microstructures in
figures 4.21c and d. The evolution of the computational domain is also charted in table 4. It is
interesting to note that the difference in response for the two RVE's is insignificant this case. This
may be attributed to lack of matrix damage or softening in the model. The plastically hardening
imatrix does not trigger adequate difference in the adaptation criteria as the particle cracking does
for composites. A larger level-1 domain opens up with the adaptation criteria for elements which
appear to be on the verge of strain localization, but subsequently do not make the transition to
level-2. The contour plots of macroscopic and microscopic plastic strain distribution in figures
4.22 and 4.23, show similar macroscopic strain distributions, but higher strains for the microscopic
model with smaller porosity RVE (i), due to.the proximity of voids. This again shows the scale
effect on the solution.

4.10.2 Homogenization vs. multi-level simulation

The effect introducing level-2 elements on both macroscopic and microscopic response is studied
by comparing a pure level-1 simulation of the square composite plate in the previous example with
a multi-level simulation. The results shown are for the larger particles in RVE(ii). The figure 77
shows the microstructure near the inside corner by the two models at the end of loading. The
boxed RVE's in figure 77a symbolize their periodic repetition. The periodicity constraint results in
a considerably large portion of the microstructure being damaged for the homogenized simulation.
The direction of the damage evolution indicated by the homogenized model is also different from
the level-2 simulations. The stress =, along the section A-B is plotted in figure 4.25 to evaluate
the effect of homogenization on stress concentrations near the corner and free edge. The two
models behave similarly upto the neighborhood of the corner. While the multi-level model predicts
a higher peak near the corner, it subsides considerably to meet the traction free edge conditions.
The corresponding microscopic level-2 stress variations for the multi-level model are shown in the
inset.

4.10.3 Effect of heterogeneity distribution and shape

To illustrate the influence of particle distribution on the macro-microscopic damage response, two
RVE's are selected with same volume fraction (20%). size (1.0mm) and number of particles (25).
One has a hardcore distribution (figure 4.15b (iii)). which is a random distribution with a minimum
permissible distance between particles, while the other has one cluster in a hardcore background.
Proximity of particles within the cluster is known to initiate damage in discrete *microstructures.
The starting macroscopic mesh is the same as in the previous examples and a total displacement
of 0.55mm is applied on the edge in equal increments. The smallest allowed size of macroscopic

73




elements by h-adaptation is set to 1mm such that each Ej; element consists of one RVE.

The evolved macroscopic models for the two RVE's, at the finish of the loading cycle, are shown
in figures 4.26a and b. The level-2 region (black) for the clustered RVE is larger than that for
the hardcore RVE. Within the Ej; elements, only one element for the hardcore distribution expe-
riences particle damage as shown in figure 4.26d. However, several Ej; elements for the clustered
microstructure exhibit particle damage, mainly within the cluster (figure 4.26e). While the macro-
scopic averaged plastic strains show very little difference for the different microstructures in figures
1.27a and 4.28a, the microscopic plots in figures 4.27b and 4.28b clearly depict the influence of
distribution. Much higher levels of effective plastic strain values are observed within the cluster,
compared to significantly lower levels in the hardcore RVE. Figure 4.30 shows the and evolution
of macroscopic stress Ly atthe corner of the square hole and the number of damaged particles
as a function of straining. The stress drops to lower values for the clustered RVE due to a larger
damage microstructure. More than twice the number of particles are damaged for the clustered
case as shown in the histogram.

To investigate the influence of shape, a RVE (see figure 4.15b (iv)) with the same volume fraction
(20%), size (1.0mm) and number (25) is considered. The particles are elliptical with aspect ratio
3.0 and randomly distributed and oriented. The evolved macroscopic model in figures 4.26c shows a
larger level-2 region compared with other two microstructures, with several Ej, elements exhibiting
particle damage. The much larger number of cracked particles is also observed from the histogram
of figure 4.30b. For this case, both macroscopic and microscopic plastic strains in figure 4.29 are
also considerably larger. The macroscopic stress Lz shows a larger drop due to the increased
damage in the microstructure.

4.10.4 A heterogeneous plate with a macroscopic holes

A different macroscopic domain, viz. a plate with periodically repeated square diagonal array of
circular holes is considered in this final example. The plate is incrementally loaded using prescribed
displacement on the top an¢ bottom surfaces to a total extension of 0.15 mm. Due to periodicity
and symmetry, only a part of domain is modeled as shown in figure 4.31. The radius of the circular
holes are 50mm for the 100 mm x 100 mm square plate as shown in figure 4.31. The microstructural
RVE is a 20% volume fraction 0.4 mm x 0.4 mm square region with a single circular particle. The
same material properties as in the previous example are used with the only exception being that
the critical particle cracking stress o = 0.2 GPa.

The adapted multilevel computational domain is shown in figure 4.32 and the number of el-
ements in each levels with increasing are tabulated in table 5. The level-2 elements are created
along a clear path connecting the holes due to localization by particle cracking. Extended portions
of the damaged microstructure in level-2 regions are shown in figure 4.32. The macroscopic plastic
strain contour in figure 4.33a gives an indication of ‘hot spots’ of evolving damage near the central
region. The microscopic strain plots in figure 4.33b show a large fraction of particles cracked and
may be interpreted as the initiation of localization to cause failure between the holes.
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4.11 An Example on Convergence of the Multi-level Method

To provide convergence characteristics of the multi-level model, an example problem of an elastic
fibrous composite with a free-edge and loaded in the out of plane direction, is considered. This
classical problem was proposed by Pagano and Rybicki (1974) to demonstrate the limitations of
effective modulus or homogenization theory in predicting stress states in laminated composites,
especially near the free-edge. The problem consists of a composite cross-section as shown in figure
(4.34a). The upper half of the cross-section consists of n periodic rows of aligned cylindrical fibers,
arranged in a square array, while the bottom half is the homogeneous matrix material. The ratio
of fiber radius to edge length in the local RVE of figure (4.34b) is 7 = 0.3, corresponding to a
local volume fraction of 28.2%. The body is subjected to a generalized plane strain loading with
out-of-plane loading, prescribed as €¢,, = 1. Due to symmetry in the zz and yz planes only one
quarter of the laminate is modeled (figure 4.34a). Symmetric boundary conditions are employed
on the surfaces £ = 0 and y = 0, and the top and right surfaces are assumed to be traction free.
The material properties for the boron fiber and epoxy matrix are prescribed as: Eporon = 60x108

pSI’ Uboron = 023 Eepozy = 0.5}(106 pSl and Vepoxy = 0 34

4.11.1 Microscale VCFEM Simulations

To establish convergence of solutions at the micro-scale, the adaptive Voronoi cell finite element
model (AVCFEM) developed in Moorthy and Ghosh (1999) is coupled with the multi-level com-
putational model. In AVCFEM, two error measures are introduced to measure the quality of the
solution. They are (i) the traction reciprocity error, derived a-posteriori from solved traction
discontinuity at the element boundary and matrix-inclusion/void interface, and (ii) the error in
kinematic relationships that is equated to an error in the strain energy, in each of the element con-
stituent phases. Displacement adaptations that minimize traction discontinuity, are implemented
to approach ‘optimal’ directions for displacement fields on the boundary/interface. These direc-
tions optimize the virtual work due to traction discontinuity and are obtained as components of
the traction discontinuity in directions, orthogonal to the original displacement field. It is achieved
through h—adaptation by adding displacement degrees of freedom in the z— or y— directions on the
boundary/interface. This is followed by polynomial or spectral p—enrichment of boundary element
interpolation functions [L]. The error in kinematic relations may be minimized by enhancing the
stress functions by polynomial enrichment or ®""p—adaptation in the matrix and inclusion phases.
Since the enrichments are carried out simultaneously for all elements, the adaptation has elements
of minimizing both local and pollution errors in the microstructure. Numerical analyses of several
microstructures with different distributions, sizes and shapes of heterogeneities have shown a supe-
rior convergence rate with these adaptations.

The adaptive VCFEM of Moorthy and Ghosh (1999) is incorporated to reduce error in mi-
crostructural simulations, especially in level-2 elements. To illustrate the effect of microscale adap-
tation, a simplified form of the problem posed above, with 1 row of 4 fibers is considered. The
mesh consists of 4 Voronoi cell elements as shown in figure 4.35a. The matrix stresses in the hybrid
formulation are constructed from an Airy’s stress function consisting of a 12 term 4-th order poly-
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nomial expansion and a 36 term reciprocal function (see Moorthy and Ghosh (1996,1999)). The
inclusion stresses are constructed using a 25 term, 6-th order polynomial function. Displacement
fields corresponding to equation (4.22) are constructed with linear shape functions for element
boundaries and quadratic shape functions for curved interface elements. The sequence of adapta-
tions consists of two cycles of h— followed by a cycle of p— adaptation of displacement degrees of
freedom, followed by a cycle of ®*"p—adaptation of the stress functions. The adapted mesh, showing
added displacement degrees of freedom, is illustrated in figure (4.35a). The pre-adaptation nodes
are marked with a e, the z direction nodal adaptations are marked with a O while those in the y
direction are shown with A. The convergence of the VCFEM solutions is stiown in figure (4.35b),

only for the average traction reciprocity error or (A.T.R.E.) as a functior. .of the total degrees of ..

freedom. The A.T.R.E. is calculated as (see Moorthy and Ghosh (1999)):

N I
Zé::l eT + Ze, =1 €T
NE + N]

AT.RE. = (4.48)

where Ng, Ny, e!r': and e§- correspond to the total number of segments and the traction reciprocity
error on the element boundary and interface elements respectively. The degrees of freedom (D.O.F.)
correspond to the sum of the total number of nodal degrees of freedom and the number of 3 stress
parameters, i.e. D.O.F. =2 * Npoges + Ng. Table 6 and figure 4.35b provide numerical details of
A.T.R.E with added degrees of freedom due to each adaptation, on the boundary and interface
only. Discrete points in the figure correspond to the different stages of adaptation. The first two
drops are for the two consecutive cycles of h-adaptation and the third for p-adaptation. The trac-
tion reciprocity error reduces rather drastically in the h—adaptation cycles, i.e. a 90% change in
AT.R.E. is obtained with a 61% increase in D.O.F.. With the subsequent p— adaptation, and
additional 4% change in A.T.R.E. is obtained with a further 13% increase in D.O.F.. Since very
little A.7.R.E. reduction is gained beyond two cycles of boundary h—adaptations, only these are
employed for the multi-scale simulations of this section.

A comparison study is made with the solutions in Pagano and Rybicki (1974) (the same results

- atre also generated by the commercial code ANSYS). The ANSYS mesh, fur' which convergence , .
is achieved has 4230 QUADA4 elements and 4352 nodes. The microscopic in- Izla.ne stress oyy plots

along horizontal sections y = h are compared for the unadapted VCFEM, adapted VCFEM and the
ANSYS model in figure 4.36. It should be noted that the transverse stress oy, is approximately two
orders lower compared to the leading order stress 0., and hence convergence is harder to achieve.
Results of the adapted VCFEM results agree very well with those of the converged ANSYS model.
This is therefore a strong attestation of the accuracy of the adaptive VCFEM solutions. The figure
also shows the singular nature of the solution in the free edge region when effective modulus theory
by homogenization is used. Since this is physically unattainable, detailed micromechanics solutions
are needed in this region. =
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4.11.2 Multi-level Simulations

To test convergence of the overall model qualitatively, the composite problem with 40 (n = 40)
rows of 6400 fibers is simulated by the multi-level code. The level-0/1 h-adaptation criterion is
based on a traction jump criterion across adjacent element boundaries, stated as:

NE p. 2 21/2
Refine element if E; > C1 % Egyy where Egyy = —Z-:—‘—'—'—IE, E; = fay (U= + [ITy” )" doy

NE [y dOY
(4.49)
where NE is the total number of level-0/1 elemants. This criterion is intended for signaling and
zooming in on regions high stress gradients. For level-0 to level-1, the transition is made based on
element jump in the significant stress oyy, in addition to the traction jump condition of equation

(4.49), stated as:

Level -0 — Level —1 if E; > C2% Egyg or YE; > C2+Y E,yy where YE; = M (4.50)
Joy dOY
where C1,C2 are prescribed constants. Finally, the level-1 to level-2 transition is made from
observations made in the microstructural RVE’s of level-1 elements. It is based on the ratio of
local energy density (at each integration point of VC element) to the average energy density for
the entire RVE (aggregate of VC elements). The procedure followed for determining this is:

e Solve the RVE problems with periodicity boundary conditions and four sets of applied macro-
scopic strains, viz. (i) ezz = 1,eyy = 0,62y = 0,€;; =0, (ii) ezz = 0,y = 1,65y =0,€;; = 0,
(iii) ezz = 0,eyy = 0,ezy = 1,€,; =0 and (iv) ez = 0,64y = 0,€zy = 0,€;, = 1.

e For all cases (i-iv) evaluate the energy densities at integration point of the matrix and inclusion

; t/incl . )
phases as U™met/ind = .S’Z.‘f:,/ "ok, where Sijx is the compliance tensor.

e Evaluate the energy density concentration factors:

Rt _ Mazimum U™t (= Umat) and R = Mazimum U™ (= Uind)

" RVE Averaged Umst(= Umat) " RVE Averaged Und (= Uinct)

e In the multi-level problem with actual strain components, the transition is made according
to:
Level —1 — Level —2 if actualUrr::; > Rmat* actualesz’t_ or actualU’z_':ac:lz > Rind*actual U;Zg-
(4.51)
at more than 1% of all integration points.

The initial mesh consists of 200 level-0 QUAD4 elements. To examine the dependénce of results on
adaptation parameters, two sets of parameters viz. (C1 = 1.5, C2 = 2) and (C1=1.25, C2=15)
are experimented with. Figures 4.37a and b show the h-adapted level-0/level-1/level-2 meshes with
the different adaptation parameters. The first set leads to 391 level-O elements, 0 level-1 elements,
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6 transition elements and 4 level-2 elements, while the second set has 475 level-0 elements, 4 level-
1 elements, 9 transition elements and 6 level-2 elements. The microstructural RVE or unit cell
is assumed to be of dimension [ = sh—o and the level-2 elements are assumed to contain a single
unit cell. The same problem is also solved using the commercial code ANSYS with a mesh of
30.000 elements, for which a 3 x 3 array of fibers near the free-edge and laminate interface are
modeled explicitly (see 4.37c). In figure 4.38a the macroscopic response of level-0 elements, with
homogenized effective moduli, is plotted. The figure shows the effect of mesh dependence in the
solutions near the free-edge. With increasing cycles of adaptations the artificial stress singularity
moves towards the free edge and gains intensity. In figure 4.38b the mirroscopic level-2 stresses are
plotted in the vicinity of the free edge (indicated as L2 in figure 4.38a). It is clearly seen that are
artificial singularity of homogenized solutions no longer exist and there is no mesh dependence near
the free edge. The two multi-level meshes of figures 4.38 a and b and the ANSYS model all produce
similar results. Thus, through this example, the convergence characteristics of the multi-level model

is qualitatively verified and confidence is gained about its application.

4.12 Discussions and Conclusion

Adaptivity in the computational modules for multiple scale problems entails minimizing two types
of errors, viz. the discretization error and the modeling error. In this work an adaptive multi-level
method is proposed to primarily focus on reducing the modeling error and predicting the evolution
of stresses. strains and damage at the structural and microstructural scales. The microstructural
analysis is conducted with the Voronoi cell finite element model (VCFEM) for elastic-plastic con-
stituents with particle cracking. VCFEM allows for continuous change in element topology due to
progressive damage with high accuracy as shown in Moorthy and Ghosh (1999) and Ghosh and
Moorthy (1998). The efficiency of the method, due to embedding micromechanics in FEM formula-
tion, makes modeling of large microstructural regions relatively easy. A conventional displacement
based elastic-plastic FEM code is developed for macroscopic analysis. Adaptive mesh refinement
and level transition strategies are developed to create a hierarchy of computational sub-domains
with varying resolutions. This differentiates between non-critical and critical regions and helps in
increasing the efficiency of computations by preferential "zoom in’. ’

Three levels of hierarchy, viz. level-0, level-1 and level-2. evolve in the multi-scale model with
progressive deformation. A piecewise continuous elastic-plastic constitutive law is developed for
level-0 simulations. The specialty of this model is that since it is developed from rigorous mi-
cromechanical simulations with precise material morphology. it is sensitive to variations in the
microstructural distribution. The constitutive relation leads to very high efficiency in simulations
when compared with two-scale analysis by homogenization (e.g. Guedes and Kikuchi (1991)).

Level-0 simulations are accompanied by mesh-refinement using h-adaptation techniques, to re-
duce discretization error in the computational model and zoom in on regions of evolving localization
due to microscopic non-homogeneity. The criteria for h—adaptation are based on gradients or jumps
in plastic work or stresses. While these error criteria are effective in equi-distributing discretization
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errors where solutions are relatively regular, they are also helpful in identifying regions of localiza-
tion or singularity due to steep gradients in the solution variables. It should however be mentioned
that the proposed refinement schemes and error criteria are by no means optimal. For example,
it has been shown in Guo and Babuska (1986), Rank and Babuska (1987) the h — p adaptation,
which combines local mesh refinement with increase of the polynomial order of interpolants, enjoy
exponential rate of convergence and excellent accuracy especially for problems with singularity.
Additionally, it has been demonstrated in Oden and Feng (1996) and Babuska et. al. (1994),
that local error estimation techniques are incapable of detecting pollution error particularly when
singularities are present. A robust mesh adaptation procedure for reducing errors should therefore
incorporate pollution error reduction criteria, as well as h — p adaptation. Much of the ongoing
and future efforts by the authors are focussed on introducing these techniques.

When imminent damage and localization are sensed by the code, the level-0 elements automat-
ically switch to level-1 elements, which use computations both at the macroscopic and microscopic
scales. The criteria for signaling such transition are nonunique and a number of them are con-
sidered in this study. Among those that yielded effective results are: (i) when the homogenized
constitutive relation has reached its limit; (ii) when the maximum macroscopic principal stress or
hydrostatic stress exceeds a certain fraction of the microscopic fracture stress or (iii) when the
macroscopic effective plastic strain or the dilatation exceeds certain pre-determined values. With
the rise in local gradients of macroscopic variables or with microstructural damage, the pre-assumed
representative volume element in the microstructure are no longer effective and a shift to complete
microscopic simulations is necessary. Extended portions of the microstructure ‘are directly mod-
eled by VCFEM in these level-2 elements. An adaptive VCFE model (AVCFEM) is used to study
convergence of the microstructural analysis model. In AVCFEM, traction reciprocity error and
error in kinematic relationships are optimized through boundary/interface enrichment in the form
of additional displacement degrees of freedom and interpolation orders, as well as through stress
function enhancement. In Moorthy and Ghosh (1999), excellent convergence rate of AVCFEM has
been established for elastic and elasto-plastic microstructural analysis. For the problem considered
in this work, two cycles of boundary h— adaptation is found to achieve desirable results in the
level-2 elements.

Several numerical examples are conducted with the multi-level model to examine the e ue of
various microstructural morphologies on the multi-scale response of composite and porous struc-
tural components. Specifically scale effects, effects of microstructural distribution and shapes and
structural geometry, on the mechanical and damage response are investigated. In conclusions,
the multi-level model has addressed a number of difficult issues in solving multi-scale problems.
However a number of avenues for further model enhancements remain. For example, the Newton-
Raphson iteration scheme used for nonlinear problems struggle for convergence, as more and more
level-2 elements with damage emerge. The migration of boundaries between different levels within
each iteration loop has an adverse effect on convergence as well. Also for the level-1 elements, an
iterative loop is necessary for convergence of steps (a). (b) and (c) in section 4.6. In addition,
the issues of adaptivity mentioned above remain. These issues are currently being dealt with for
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making this an effective tool in the prediction of structural failure.
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Figure 4.1: A heterogeneous structure showing various scales: (a) The structure at the macroscopic
scale of applied loads (b) A representative volume element (RVE) at the microscopic scale with
the VCFE model and (c) A Voronoi cell element at the scale of a single heterogeneity or basic

structural element.
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Figure 4.2: A hierarchical multi-level computational domain; Level-0 for macroscale continuum
modeling (a) Level-1 for coupled macro-microscopic (RVE) modeling with asymptotic homogeniza-
tion and (b) Level-2 for pure microscopic modeling
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Figure 4.3: Flow chart of the sequence of operations in the multiple-scale model.
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Figure 4.6: Microstructures with different shape, size, orientation and spatial distribution, for 20%
volume fraction composite (C1,C2,C3,C4,C5,C6) and porous (V1,V2,V3,V4,V5,V6) materials.
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Figure 4.8: (a) Finite element model for a quarter of the square composite plate with square hole
and (b) the VCFE model of the microstructural composite RVE. ‘ '
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Figure 4.9: Comparison of macroscopic stress (X;;) contours in composite material with (a) the
homogenized constitutive model and (b) two-scale analysis with asymptotic homogenization.

92




- 9.411E+00
- 7.529€+00

-

r 5.648E 00

- 3.784E4+00

- 1.882E+00

- 0.000€+00

3.155E+00

2.524E+00

K 3 q.

- 8.310€01

e =

- - 0 000E«00

(b)

Figure 4.10: Contour plot of the microscopic plastic strain € in the voided microstructures under
pure shear loading condition, for (a) V1 (b) V2 microstructures. :

93




01 . 011 - -
010 - / . 0.10 - / :
. . o) # .
009 - Tl - 0.09 ~ ; // -
= - = . 2
a N .
§ o g o / .
e o007 - Z - 0.07 - s N
° . v-,{/ . 8 . / .
! S
§ 006 - ~ 4 2——o0 asymplotic homogenizaton - g 0.06 - i o——0 asymptotic homogenization -
s ———e hOmogenization constiutive law. . Pird ———s hOMOQeNIZAtION CONSNILULIVE law:
. o7
% 008 - 3 2 005 - 4o .
- : © o« .
g 004 - I 4 % 0.04 - I -
002 . . 003 - .,
ooz -* 002 -*
. K3
co1 * - ooy *
! 4 \
] 08 o 08 -
000 0 002 O 004 0.008 0 008 0.010 0.012 .000 0 002 0.004 0 cos 0 008 0.010 0.012
axial atrain in loading direction axial strain n loading direction
(a) (b)
010 010 ~
i
00® - - 009 - / B
008 - 1 008 - 5

007 -

008 -

/’: asymptotic homogenization

nomogenization constitutive law
-—— aluminum matrnx

Pos i

o ——© asymptotic homogen:zaton 1
y ———+ NOMOQENIZALON CONBLITULIVE law |
—— aluminum matnx .

anal stress 1 badng dvection{GPa)
o
o
o

avial siress i loadng drecton{GPa)
(]
[}
w»

000 & -
0 0000 0 0040 O 0080 00120 00180 0.0200 0 0040 0 0080 0.0120 0 0Y60 0.0200
axial stran ¥ loading direction axial strain n loading direction

(c) (d)

Figure 4.11: Comparison of the stress-strain results in the porous material for (a) bi-axial ten-
sion for V1 microstructure (b) bi-axial tension for V3 microstructure, (c) uniaxial tension for V1

microstructure and (d) uniaxial tension for V3 microstructure.
: =

94




- .
5 008 - < 008 - el -
o a ——— :
<] <] 3 :
: o H
.

8 goe - 8 soe - -
§ § ’
S 4 i .

. g ..
g 004 - 0 ASYymMpPIOtic hOMOoQeniZation @ 0.04 - >——© asymptotic homogenizanon

——e homogenized constitutive law ———e hOMOgeNnIZed CONSUILLIVE iaw

g aluminum matrix g alumnum matnx

0.02 - - 002 -°
i
000 [ 0.00 1 :
00000 00010 00020 00030 0.0040 0.0050 0.0080 00000 0.0010 0.0020 0.0030 0.0040 0.0050 0 0080
- axial stran in loading direction axial strain in loading direction

(a) (b)

010 -

0 oe - - F oo - -
% : % :
% oo - 4 % 0.08 - 4
s ! 3 i
g H : i
3 004 - o——0 asymptotic homogenization -1 004 - ¢ o——o asymptotic homogenization 4
——— hOMOQeNIZed CONStUtive law - e hOomogenized constitutive law
g —— alumnum matnx f E . aluminum matrix
Q02 - + 002 ->?
/’ .
f '
s [ .
000 4 0.00 —_—
0 00000 00100 00200 003CD 00400.00500.00600.00700.0080 00000 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060
axial strain in loading direction axial stram In loading direction

(c) (d)

e e

- < ":
3 4 S !
g ! H :
. g i
g 1‘ g 1
. . ) < i
i : | g 1
g 004 -, o—© aSYMPIotic NOMOQeniZaton 5 004 - | >——© asymptotic homogenization i
*——s hOMogenized constitutive law —— homogenized constitutive law |
! — slumnum matex i 2 aluminum matrix i
' |
. 1 ’ = )
002 -¢ . 002 o 4‘
{ ! 1
i
B |
000 — 000 | - imeee i

0 000 00100 00200.00300.00400.00500.00600.00700 0080 0 00000 00100 00200.00300 00400.00500.00600.00700.0080

axial stran N loading direction axial strain in loading direction

() o1 SO

Figure 4.7: Comparison of the stress-strain results in the composite for the uniaxial loading test
by (i) macroscopic analysis with the homogenized constitutive model and (ii) two-scale analysis
with asymptotic homogenization model for: (a) C1, (b) C2, (c) C3, (d) C4, (e) C5 and (f) C6
microstructures. )




‘cF"tS‘“é’ﬁ"‘éJ

oxgorgioneN
O
O

AN

(a) (b)

Figure 4.8: (a) Finite element model for a quarter of the square composite plate with square hole
and (b) the VCFE model of the microstructural composite RVE..
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averaged strain and (b) the level-2 microscopic strain at the critical region for the ‘Smaller RVE (i)

model.
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Figure 4.19: The evolution of £, at the corner node of square hole for the two microstructures.
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Figure 4.20: Histogram of the number of damaged particles as a function of straining.
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Figure 4.27: Contour plot of plastic strain & for the composite square plate: (a) the macroscopic
averaged strain and (b) the level-2 microscopic strain at the critical region for the hardcore RVE
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Figure 4.28: Contour plot of plastic strain & for the composite square plate: (a) £he macroscopic
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Figure 4.29: Contour plot of plastic strain & for the composite square plate: (a) the macroscopic
averaged strain and (b) the level-2 microscopic strain at the critical region for the elliptical RVE
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Chapter 5

Experimental-Computational
Investigation Of Damage Evolution In
Discontinuously Reinforced
Aluminum Matrix Composite

5.1 Introduction

The commercial use of particle-reinforced metal matrix composites in automotive, aerospace and
other engineering systems has increased in the last few decades due to their potentially superior
mechanical properties, as well as their ability to reduce life-cycle costs through enhanced thermal
stability and weight reduction. The property advantages of these materials are. however, often di-
minished by general degradation of failure properties like ductility and fracture toughness. Various
experimental and numerical studies (1, 2, 3, 4, 5, 6,7, 8, 9, 10] have been conducted to understand
the influence of morphological factors such as volume fraction, size, shape and spatial distribution
as well as constituent material and interface properties on the deformation and damage behavior.
These studies have concluded that failure mechanisms are highly sensitive to local reinforcement
distribution, morphology, size, int~:facial strength etc.

Traditionally unit cell models [11, 12, 13, 14, 15] based on the finite element analysis have
been used to predict the onset and growth of evolving damage in composite materials. While these
models provide valuable insights into the microstructural damage processes, simple morphologies
idealize actual microstructures for many engineering materials that bear little relationship to the
actual stereographic features. These deficiencies have been circumvented in (16, 8, 17], where com-
putational models of discontinuously reinforced materials with random spatial dispersion have been
considered. Richmond and coworkers [18, 19] have investigated the effect of morphology on damage
in composite, porous and polycrystalline materials by modeling actual geometries obtained from
2D micrographs. Using the Voronoi Cell finite element model, Ghosh et. al. [9, 10] have examined
the effect of various spatial dispersions and particle shape and size on the damage initiation and
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evolution process in ductile matrix composites.

Many characterization studies with 2-D microstructures e.g. (20, 21, 22, 23] have also been
conducted to understand the relation between microstructural morphology and damage. Experi-
mental research [25, 26, 27, 28, 29] has however pointed to the necessity of examining the full 3D
characteristics for understanding the damage process. These studies infer that 2-D assessment can
sometimes be misleading, especially in the presence of spatial clustering. Non-destructive evalua-
tion methods, e.g. techniques based on ultrasonics e.g. [30], acoustic emission [4] and X-ray based
computer tomography (CT) [31, 32] have emerged as potential methods for studying 3D damage.
However many of these systems are thus far not capable of achieving spatial resolutions required to
accurately capture microscopic particles and damage in the particle reinforced MMC'’s. Buffiere et.
al [33] are developing a CT technology to yield tomographic images with a higher spatial resolution.

This work deals with a combined experimental-computational approach to study the evolution
of microscopic damage to cause complete material failure in commercial SiC particle reinforced
aluminum alloys or DRA’s. Through a combination of 2D and 3D characterization and analysis
models. it is intended to understand what aspects of microstructural morphology that are most
critical for damage nucleation and evolution. Since it is difficult to identify the microcrack growth
process once a material has failed completely, an interrupted testing technique is designed. Sub-
sequently, sample microstructures in the severely necked region are microscopically examined in
3D using a serial sectioning method discussed in [24. 25, 26]. Computer simulated equivalent mi-
crostructures are tessellated into meshes of 2-D and 3-D Voronoi cells. Various characterization
functions of geometric parameters are generated and a sensitivity analysis is conducted to explore
the influence of morphological parameters on damage. 2D characterization functions are compared
with 3D to evaluate the effectiveness of modeling the 2D micrographs. Modeling of the initia-
tion and propagation of damage is conducted with Voronoi Cell Finite Element Method (VCFEM)
(9, 10, 34, 35]. Each Voronoi cell element may consist of a matrix phase, an inclusion phase and
a crack phase. Damage initiation by particle cracking is assumed to follow a maximum principal
stress based Rankine criterion. The VCFEM for particle cracking has shown a significant promise
in modeling large aggregates of heterogeneities. While the appropriateness of 3D analyses is rec-
ognized for this study, the 3D VCFEM (under development) does not currently have all necessary
features. Due to enormous computing requirements of conventicnal 3D FEM models, various stud-
ies have resorted to simplified manifestations of complex geometries and properties e.g. [7, 41, 15].
This study is restricted to 2D in the form of VCFEM analyses of section micrographs. Finally, the
effect of size and characteristic lengths of representative material element (RME) on the extent of
damage in the model systems is also investigated.

5.2 Experiments for Damage Assessment

5.2.1 Interrupted tests

The material analyzed in this work is a discretely reinforced commercial aluminum tHat is fabricated
by a powder metallurgy process [36]. It consists of extruded commercial X2080 aluminum alloy
with 15% volume fraction SiC particles. The X2080 matrix has a nominal alloy composition with
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weight percentages of 3.8% Cu, 1.8% Mg and 0.2% Zr, in addition to low impurity contents of Fe
and Si. The precipitation hardened X2080 aluminum alloy system is naturally aged by heat treating
for 4 hours at 930°F, followed by cold water quench and aging for 2 days at room temperature.

An important object in this failure study is to obtain adequate microstructural data that depict
the growth of damage into a major failure path. In general, it is difficult to identify the domi-
nant damage mechanisms and also the microcrack growth process, once a material has fractured
completely. Thus an interrupted testing technique is designed where the load and deformation are
halted in the material instability zone, following necking but prior to fracture. The tests assume
that the major cracks are essentially prominent is this stage, and are helpful in understanding the
linkage mechanism of microcracks or particle debonds to facilitate growth of the dominant damage.
To initialize the testing, estimates of the necking and fracture strains are first obtained by observing
the behavior of a tension test to failure. The uniaxial tension tests are executed on a MTS 810 ma-
terial system with a HP 7044 X-Y recorder to monitor the loads and strains, and the critical strains
are measured with a MTS 632.11 strain gauge extensometer. Following the initialization, strain
controlled interrupted tests are carried out, in which the specimens are loaded to the instability
region before the load is stopped.

Figure 5.1a shows a typical tension specimen for the naturally aged material. Data for six
specimens of this material, viz. tl, t2, t3, t4. t5 and t6 are tabulated in table 1. The specimens
t1. t2, t4 and t6 are obtained from the outer annulus region of the stock material while t3 and
t5 are from the central core regions. The initialization of the test to study the entire material
behavior and estimate the post-instability region is done with specimens t1 and t2. The material
load-displacement curve is plotted in figure 5.1b, from which the necking strain is obtained.from
the peak load value. For the specimen t1, the test is conducted at a strain rate is ¢ = 5x10%sec™!
and the necking strain and fracture strain are found to be €, = 9. 15% and e, = 9.40% respectlvely
The short instability region in t1 prompts a reduced strain rate é = 3x10~%sec™! for specimen t2,
for which ¢, = 9.05% and ¢; = 9.20%.

In table 1. ¢, €, and ¢; correspond to the strain rate, the necking strain and the interrupted
strain respectively. The interrupted strain coincides with the fracture strain in the event that
fracture precedes the load stoppage. This is indicated with F or I 'in the table. Load interruption is
only possible for the specimens t3 and t6 due to the extremely short post-instability range of this
material in comparison with the resolution of the loading mechanism. The necking crains for the
specimens t1, t2, t4 and t6 are in the range of 9.00% ~ 9.30%, while those for speciiaens t3 and t5
are in the 9.80% ~ 10.20% range. This difference is possibly due to gradients created by the heat
treatment at different locations in the stock material. The core cools slower and more uniformly
regions near the surface. This results in the more uniform microstructure and larger necking and
fracture strains for specimens (t3 and t5) located near the core of the stock material.

5.2.2 Damage examination and microscopic analysis

To examine the dependence of microstructural damage on the local morphology,eserial sectioning
of sample coupons extracted from the load-interrupted specimens t3 and t6, is invoked. This
method. discussed in [24, 25, 26], involves gradual removal of material layers to obtain a series
of scanning electron/optical micrographs, representing sections of a microstructure. It is a very
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effective method for reconstructing 3D microstructures from a series of 2D sections of particulate
reinforced composites, requiring a resolution of few microns. Prior to sectioning, locations are
selected in figure 5.1a for cutting out the sample coupons. X-rays and acoustic microscopy with
a AEROTECH UNIDEX 11 acoustic microscope with a resolution of about 50um are used in
this process to detect regions that contain major crack paths. Polished surfaces of these extracted
samples are then examined by a Nikon optical microscope for major damage sites. For the specimen
t3, shorter cracks passing through 2 ~ 3 particles at most are found. However, for the specimen
t6. a larger crack passing through 5 ~ 6 particles is identified, and is consequently chosen for
analysis. Coupons of approximate size 6 mm x 6 mm x 6 mm are subsequently prepared for
the serial sectioning operation to sequentially expose parallel sections of the microstructure. As
discussed in [24, 25, 26], parallel layers in a direction perpendicular to the straining direction (see
figure 5.1a) are removed using a precision dimple grinder. The depth of material removal per step
is selected such that each particle is sectioned at least once, ensuring that all particles of interest
are adequately captured in the micrographs. For the DRA considered, the particle size range is
approximately 3-25 um, with an average size of ~ 9.2 um and the standard deviation is 3.891 um.
The section to section step size is chosen to be 2 pm, corresponding to a total traversed thickness
of 36um for 18 sections. Two typical micrographs showing damage are depicted in figures 5.2,
for which the horizontal corresponds to the loading direction. The micrographs are then serially
stacked using a graphic software [37] to yield 3D microstructures as shown in figure 5.3a. The
precise 3D location, shape, size and orientation of each particle can be obtained at a fairly high
resolution by this method.

5.2.3 Major observations

The micrographs of serial sections 3 and 5 in figure 5.2, perpendicular to the middle plane of the
tensile specimen, provide important information on the evolution of the dominant damage path
in the material. A dominant damage path is clearly seen in the boxed regions. The damage size
progressively diminishes with increasing sections, indicating the end of the cracked particles. The
particle area fraction (AF), total number of particles (NP) and total number of cracked particles
(NCP) for each section micrograph are presented in table 2. Generally speaking, sections with large
AF and NCP are found to contain the larger cracks. The 3D image by assembling 2D micrographs
in figure 5.3a also shows the dominant damage path in the boxed region.

From the microscopic observation results, it is found that for the naturally aged material, the
main mode of damage is by particle cracking. Large particles in particle rich regions are more
susceptible to cracking than those in particle sparse regions. Microcracks in the particle rich areas
link up to form paths of dominant damage. The linkage and evolution of these larger cracks lead
to the overall failure of the material. These paths are approximately perpendicular to the tensile
loading direction. Thus, spatial distribution of particles plays a more important role in damage
than particle size for this material. =
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5.3 Equivalent Microstructure & Mesh Generation

The actual 3D geometry of particles, as seen in figure 5.3a, can be quite complex and an exhaustive
database is required to store all geometric details. To avert this, equivalent microstructures that
closely approximate the actual morphology but are computationally less demanding, are generated.
In this process, each particle and an associated crack are replaced by equivalent ellipses (in 2D) or
ellipsoids (in 3D). This method economizes the image analysis and characterization process by way
of well known geometric properties. For obtaining equivalent microstructures, digitized image data
is first transferred into a binary format to distinguish between the particle, matrix and crack phases.
The 0th (Iy), 1st (Iz, 1) and 2nd (Irz, Iyy) order geometric moments are then computed for each
particle by adding conmbutlons from each voxel (in 3D) or pixel (in 2D) that lies within the particle
boundary. For 2D microstructures the computed moments are equated to the moment formulae
for ellipses to evaluate the centroidal coordinates (zc,y.), half major and minor axis lengths (a, b),
and orientation 6 of the major axis from:

I I 1 1
o= 7 ve=7 a=\/;(Cl +1/C2-4C,) , b= \/5(01 ~/C? - 4Cy)

1 4 Iy, -1 12 -2 -
9 = =cos~! yy " dzz 1y 71z , '
5005 (g ) (B 7 (5.1)
2
where C) = 4 % ([‘L{ﬂ ——;—l) and Cy = —% For 3D microstructures, the centroidal coordinates

(Tey Ye. 2c) Of the equivalent ellxpsmd are first evaluated from the Oth and 1st order moments as:
I = % . Yo = —fl y Zc =1 The principal directions (or orientations of the three axes) for the
ellipsoids are obtamed from the eigen-values of the 2nd order moments I;; (i = 1..3,j = 1..3). The
major (2a), intermediate (2b) and minor (2c) axes of the equivalent ellipsoids are then obtained

from the principal moments Iy, I2, I3 as:

am 2t L-D), b= 2L+ =) c= | 2(h+ 1~ Iy) (5.2)
Io Io IO

A simulated 3D microstructure with particles (grey) and cracks (black) is shown in figure 5.3b.
The microstructures are then tessellated into a mesh of 2D and 3D Voronoi cells, by surface based
algorithms detailed in (25, 26]. In figure 5.3c, the mesh of Voronoi cells is created based on the
morphology of particles, while in figure 5.3d the mesh is due to tessellation based on the geometry
of particle cracks. Tessellation into a mesh of Voronoi cells plays an important role in developing
geometric descriptors for quantitative characterization. They represent regions of immediate influ-
ence for each heterogeneity and also define neighbor of each heterogeneity from individual faces or
edges of the Voronoi cells. This facilitates easy evaluation of parameters like local area fractions,
near neighbor and nearest neighbor distances and orientations.

5.4 Microstructure and Damage Characterization =

The morphology of particles and associated damage or microcracks can be characterized by various
functions of size, shape, orientation and spatial distribution. A number of these classifier functions
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have been used by the authors and others in [24, 25, 26, 34, 35, 20, 21, 22, 6] to characterize various
aspects of microstructural morphology. In this section, some of these functions are considered
for the 3D microstructure and 2D micrographs to investigate the relation between morphological
characteristics and the path of dominant damage in the material. The specimen t6 with a large
microcrack is considered for this study. )

In the first exercise, a sensitivity analysis is done with the simulated 3D microstructure in figure
5.3b to reveal the dependence of damage on microstructural variables. Two damage parameters,
viz. the number fraction of cracked particles (nf) and the volume fraction of cracked particles (vf)
are chosen to manifest the damage level in the DRA. Six microstructural parameters are considered,
viz. (i) particle equivalent size (diameter); (ii) nearest neighbor distance computed as the distance
between particles that share a common Voronoi cell edge; (iii) local volume fraction measured as
a ratio of the particle size to that of the associated Voronoi cell; (iv) particle shape or ellipsoid
aspect ratio; (v) nearest neighbor orientation, measured as the angle between a line joining the
centers of particle and its nearest neighbor, and the loading direction; and (vi) particle orientation
with respect to the loading direction. The cracked particle fractions are plotted as functions of
these parameters in figure 5.4. A linear interpolation, obtained by a least square fit, yields the
corresponding overall gradient or slope.

While both the nf and vf plots coincide for the particle size plot (i), large differences are noted
for nearest neighbor distances (ii) and aspect ratios (iv). Largest slopes of these plots are observed
with particle size, nearest neighbor distance and local volume fraction. This infers that the strongest
influence on particle cracking comes from the size and local spatial distribution. Particle shape has
a relatively smaller effect on damage initiation. Sensitivity of damage -to particle orientation and
nearest neighbor orientation is found to be minimal for this material.

The characteristics of particles forming the dominant damage path (within the marked box in
5.3a) are compared with those for all cracked particles in the histograms of figure 5.5. The dotted
lines correspond to all cracked particles while the shaded areas are for cracked particles in the
dominant damage region only. The histograms are with respect to three variables that are found
to play important roles in the damage process, viz. the particle size, nearest neighbor distance
and orientation with respect to the loading direction. While the range of sizes for all cracked
particles is 4 ~ 13um, that for the particles forming the dominant damage path is 5.7 ~ 13um.
This reveals that larger particles gererally contribute to dominant damage path. The plot for
nearest neighbor clearly exhibits iiie influence of particle rich areas (clustering or alignment) on
the preferential growth of damage. The nearest neighbor distance for particles in the dominant
damage path are in the range 0.4 ~ 3.7um when compared with the range 0.4 ~ 12.3um for all
cracked particles. The histogram of cracked particles as a function of the orientation with respect to
the loading direction reveals that particles with major axis along the loading direction (0° and 180°)
are generally susceptible to cracking. This is much more pervasive for particles in the dominant
damage path, due to the smaller cross-sectional areas normal to loading. In conclusion, particles
in the dominant damage path generally have larger size. are in particle rich areas, and are oriented
in loading direction. =

Finally, it is of interest to identify discriminating characteristics of 2D micrographs that may
be helpful in making dominant damage predictions for the actual 3D microstructures. Two repre-
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sentative micrographs, viz. section 1 which contains a dominant damage and section 14 with-
out any dominant damage, but only scattered particle cracks are compared with the 3D mi-
croregion. Four important characterization functions viz. (a) the probability density function
of particle equivalent size (diameter), (b) the probability density function of the nearest neighbor
distance. (c) the probability density function of the local area/volume fraction and (d) a trans-
formation function L(r) of a second order intensity function K(r), are plotted in figure 5.6 for
* 9D and 3D micrographs. The second order intensity function K (r) and its transformed functions
(L(r) = (5;,@)% in 2D, and L(r) = (%K(r)ﬁ in 3D) capture second order statistics of spatial
distributions are used as a graphical tool for detecting departures from a homogeneous Poisson
process [34, 35, 25, 26]. The plot of L(r) vs. 7 is a 45° straight line for a pure Poisson distribution.

The plots distinctly reveal a few important features of the micrographs. The particle size
distribution for the two 2D micrographs are similar and the tails are significantly shorter than
3D. As is expected, 3D particle sizes are larger than 2D particle section sizes due to sectioning
along non-principal planes. However the probabilities of both the nearest neighbor distances and
local area fractions in figures 5.6b and c yield a distinguishing characteristic. The micrograph with
dominant damage has peaks and valleys, as well as tails that are very similar to that for 3D. The
peaks which reflect particle rich regions and the tails which reflect sparse areas are both found to
be important discriminants. Deviation from the L(r) = r function or the 45° line represents a
bias towards clustering. The section with the dominant damage has a larger deviation from the
random distribution in comparison with the section without major cracking, and is closer to the
3D response. In summary, it may be concluded that when analyzing 2D sections, the liklehood of
better representation of dominant damage are for those sections that have higher peaks at lower
near neighbor distances with longer tails and have higher deviation from the Poisson distribution.
Similar observations have also been made in [5, 1, 38, 29].

5.5 Damage Simulation by Voronoi Cell FEM

Two dimensional plane strain/stress simulations of the microstructural damage evolution is con-
ducted by the Voronoi cell finite element model (VCFEM) described in [9, 10, 34, 35]. The current
9D VCFEM only accommodates particle cracking, and hence matrix cracking is ignored in the sim-
ulations. The simulations are useful in understanding the dainage evolution process by a sequence
of particle cracking. Rectangular 195um x 155.018um micrographs as shown in figure 5.8a,b are
analyzed with monotonically increasing strains. Periodicity boundary conditions are imposed by
requiring edges to remain straight and parallel to the original direction throughout deformation as:

u; = 0(on1:=0),uy=0(cmy=0),’uz=u,1p(onr=LI),uy=D;(ony=Ly)A
T, = 0(onz=0/L;), Tr=0(ony=0/Ly) (5.3)

where ugp, is an applied displacement and Dj is determined from the average force condition
[xTzdz = 0 ony = Ly. The reinforcing phase of SiC particles are assumed te-be brittle and
is modeled with the linear elastic properties: Young's modulus E = 427 GPa, Poisson's ratio v
— 0.17. The aluminum matrix material is assumed to be ductile and is modeled by small defor-
mation isotropic hardening J; elasto-plasticity theory with properties: Young's modulus £ = 72
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GPa, Poisson’s ratio v = 0.33 and the post yield elastic-plastic behavior is obtained from [39] as
shown in figure 5.7. Microstructural damage by particle cracking is assumed to be governed by
a maximum principal stress or Rankine criterion. In this criterion, a crack is initiated when the
maximum principal stress in tension exceeds a critical fracture stress o, at a point. The crack is
oriented at right angle to the principal stress direction. The critical stress o, is also influenced by
the particle size due to the existence of microcracks. To account for the size effect in o, a Weibull
distribution based criterion is used, where the probability of particle fracture P;(A, o) is related to
the particle volume/area v and the maximum principal stress o; as:

Pyv.0r) = 1 - expl~o(Z)™) | (54)

where ¢ and m are two material parameters in the Weibull distribution that are calibrated from
experiments.

5.5.1 Calibration of Weibull parameters oy and m

In the two parameter Weibull model, the fraction of fractured particles may be obtained (see
[41. 42. 26]) from a known probability distribution of particle volumes p(v), as:

Vinaz v vi 0h o
o) = [ plo) Privon)dv = S p(u) (1= expl- 22 (5™ A (5.5)

where p(v;) is the probability density distribution of particle volume/area v;. The entire area is
divided into N intervals such that Av; = v; — vi_1, o} is the average particle maximum principal
stress for particles with size in the range of [v;_1, v;] and vy is a reference area taken to be the average
area. The fraction of cracked particles p is readily obtained from the experimental micrographs.
Again, the section micrographs 2, 8 and 14 are used to calibrate the Weibull parameters. The
fractions of cracked particles and the average particle area for these three sections are 31.78%,
24.76%, 28.57% and 53.43, 48.91 and 52.67 um? respectively. The maximum principal stress o} for
each particle is obtained from VCFEM simulation prior to the onset of particle cracking at a true
strain of € = 8.88%. From the experimental observations it is assumed that no major damage has
initiated at this strain. The Weibull parameter m is assumed to take integer values between 1 and
8 following [42. 26] and the corresponding values of og are given in table 3.

The Weibull parameters are also calibrated using a 3D ABAQUS model simulation of a cubic
unit cell with a single, 15% volume fraction, spherical particle as described in [26]. The 1x1x1 unit
cell model has a particle of radius R = 0.66. A modified form of equation 5.5 is used to account
for the shape variability of the particles as

Qmaz Vmaz
pla)= [ [T plaipte) Prv.ards (5.6)

QAmn
(=

where a corresponds to the particle aspect ratio. The particle size and shape distribution functions
p(v) and p(a) are calculated from the computer simulated representation of the actual 3D mi-
crostructure shown in figure 5.3. This average particle volume and the fraction of cracked particle
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are directly computed from figure 5.3 as ¥ =642.0um® and p = 45.48%. The average particle stress
at a macroscopic strain e = 8.88% is obtained from the ABAQUS simulation as o, = 862.60 MPa.
Results of calibration with and without shape effects are documented in table 3. It is found that the
best agreement in g for all 2D sections and 3D is obtained for m between 4 and 5. Consequently
the parameter is chosen to be m = 4.2. The corresponding value of og for section 2 is 3.04 G Pa, for
section 8 is 3.19 G Pa, for section 14 is 2.79 G Pa and the average of these sections is oo = 3.01G Pa.

Results of VCFEM analysis of the simulated micrographs of sections 1, 3, 5 and 9 are provided
in table 4. The number of cracked particles at a macroscopic strain of 8.88% by VCFEM are
compared with experimental results. While the general agreement is quite good, it is seen that the
concurrence is particularly favorable when the simulation is conducted with a oo that is obtained
from a section that is near to the one being analyzed. For example, the results of sections 1 and
3 are very good when o¢ = 3.01 GPa, which is obtained from section 2. This concurrence may
be attributed to the similarity in the distribution of heterogeneities in neighboring sections, and
suggests that spatial distribution has a strong effect on the Weibull parameters.

Microscopic Damage Analysis

Various results for section 1 which contain a dominant damage path are generated by VCFEM
simulation and compared with experimental observations in this section. The macroscopic stress-
strain plot for plane strain and plane stress assumptions are compared with experimental results in
figure 5.7a. The overall yield strength is better predicted by the plane stress model. However, the
post yield behavior with plane strain conditions is much closer to the experimental results. The
initial higher yield strength is expected with plane strain due to the plastic constraint caused by
the €, = 0 condition. A shifted stress-strain plot (modified plane strain VCFEM result in figure
5.7a) where the stresses are reduced by the initial difference in yield stress shows a very good
match between experiments and simulation. Thus plane strain assumptions are used in subsequent
computations. Figure 5.7b is intended to predict the onset of plastic instability by the model and
compare it with actual fracture observed in the experiments. The use of the Considere criterion
to predict the onset of plastic instability has been suggested by Llorca (2, 41] in the absence of
dilatational strain associated with reinforcement fracture. In this criterion, the average stress & is
related to the strain hardening rate %% as :
dé
de
The strain derived from this relation corresponds to the lower bound of the tensile ductility since
it controls the composite load bearing capacity. Three sets of curves are plotted in the figure 5.7b
corresponding to the matrix material, the VCFEM results in plane strain and the experimental
results. It is seen that the Considere criterion (junction of the two curves) predicts the experimental
point corresponding to the onset of fracture rather well. Additionally the 2D prediction of the plane
strain simulation is also quite good and can be used with reasonable confidence. =
Microstructural results of the simulation are compared with experiments in figure 5.8. The
computed micrograph with evolved damage for section 1 is compared with the experimental micro-
graph at 8.88% strain in figure 5.8a and b. The damaged particles are shown with the contained

G = (5.7)
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crack. Most damaged particles in the simulation coincide with the experimental results, with the
box indicating the dominant damage path. The damage path is approximately perpendicular to
the tensile loading direction. Figure 5.8b also shows the contour plot of effective plastic strain
in the ductile matrix and indicates the path of damage linkage. The plastic strain is higher and
localized between cracked particles and this is expected to cause matrix cracking. The number
fraction of cracked particles in different size ranges are plotted in figure 5.8c. Very good agreement
is seen between simulation and experimental results. Figure 5.8d is a contour plot of the particle
fracture probability at 8.88% strain. The black shade corresponds to the highest probability and
fractured particles are illustrated in white with a crack. Similar plots (not shown) at earlier stages
of deformaticn show that several particles with higher probability at the smaller strain have cracked
with deformation. The number fraction of cracked particles as a function of straining are plotted
for sections 1, 5 and 9 together with the experimental observation in figure 5.9. At lower strains the
number fraction of of cracked particles for sections 1 and 5 with particle rich regions are higher than
that for section 9. This is due to higher stress concentrations particle rich areas that are enough to
fracture some particles even at low strains. With increasing strains more particles start to crack in
the section 9 and exceeds that for section 5 which has less particles in the clustered regions. The
2D simulations however exhibit less cracked particles than that in the actual 3D microstructure.

5.6 Characteristic Size of Microstructures

The influence region of local morphology on the mechanical response is characterized by a mi-
crostructural representative material element (RME) that is critical in delineating length scales.
The RME depicts a region which is assumed to be representative of the entire microstructure.
Functions that distinguish between variations in stress/strain distributions for local disturbances
in microstructural patterns can provide important insight on microstructure-property relations.
Marked correlation functions, discussed in (22, 10, 35, 26] for multivariate characterization of pat-
terns, are evaluated to characterize length scales or RME size in the presence of damage. A mark
may be identified with an appropriate microstructural variables, e.g. in this case a variable that
related to quantification of damage. The marked correlation function for a heterogeneous domain
W of volurie V containing N heterogeneities is mathematically expressed as (22,23, 10]:

1 dK(r)
4nr?  dr

- dH(r) 2 N K
M(r)= iiw—l; H(r)= %NLZZ m,mi(r) and g(r) = (5.8)

g(r)

where K (r) is the second order intensity function defined in :34. 35], g(r) is the pair distribution
function and H (r) is the mark intensity function. The H(r) function reduces to the K(r) function if
all heterogeneities have the same mark. A mark associated with the ith heterogeneity is denoted as
m,. k' is the number of heterogeneities which have their centers within a sphere of radius r around
ith heterogeneity, for which the mark is my, and m is the mean of all marks. By definition M(r)
establishes a relation between the location and associated variables for heterogeneities. Two marks
are considered in this study. The first corresponds to particle cracks and are designated as m; =1
for a cracked particle and m; = 2 for an intact particle. The second corresponds to the probability
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of particle fracture, which signifies the propensity to advance the microstructural damage state.
The M(r) function statistically stabilizes at near-unit values at a distance rin¢, at which the local
morphology ceases to have any significant influence on evolving variable. Values of M(r) > 1 show
positive correlation, while M(r) < 1 indicates repulsion between marks. This distance rin¢er is an
indication of the physical range of interaction and is significant in making decisions about length
scales and the RME size.

The marked correlation functions corresponding to cracked particles and probability of fracture,
are plotted in figures 5.11a and b from the simulation of the entire micrograph of section 1 (termed
as RME 0) with dimensions 195;m x-155um. The dotted line corresponds to the unit M(r)
for uniform distribution of spherical- heterogeneities with identical marks. Contour plots of the
equivalent plastic strain in the simulated micrograph with cracked particles are shown in figure
5.10a. The particle area fraction for this micrograph 18.37% and the total number of particles
and cracked particles are 105 and 34 respectively. The plots are made with only upto 40% of
the entire micrograph, or 80um to avoid boundary effects in M(r). The M(r) functions in both
figures approximately stabilize at near-unit values at a distance Tineer of about 60 um. At this
distance. the local morphology is expected to have a significantly reduced influence on the evolving
variables. The slower attenuation of M (r) for particle fracture at shorter range indicates the strong
effect of the local morphology on damage evolution. Next, a smaller region (RME 1) is selected
for damage simulation corresponding to the stabilized region in the M(r) plots. Since the stable
region is 60um, the dimension of the micrograph is chosen to be 150um x 155um. incorporating
the scaling factor, i.e. 9_349 = 150. This is shown with the box in figure 5.10a. Again the contour
plots of plastic strain with cracked particles by VCFEM simulation are shown in figure 5.10b.. The
dominant crack behavior is quite similar to that for RME 0, even though there is some difference
near the boundary. Also the plastic strain contours and limiting values are similar. The particle
area fraction for RME 1 is 18.13% with the total number of particles and cracked particles at 84
and 28 respectively. The M(r) plots in figure 5.11c and d show that the functions may still be
assumed to stabilize at around 60um. A smaller subset (RME 2), with dimensions 116pumz115um
is next simulated and the plastic strain is depicted in figure 5.10c. Significantly different plastic
strains and cracking pattern is observed for this microstructure. T he particle area fraction for
this micrograph is 18.68% with a total of 51 particles of which 18 are cracked. The plots of M(r)
function do not stabilize in the domain of the simulation window. Through this analysis the size
effect of microstructure, needed ior adequate representation and analysis in the presence of evolving

damage is demonstrated.

5.7 Conclusions

In this work, a combination of experimental and computational methods are utilized to characterize
and understand the evolution of microscopic damage that cause failure in naturally aged commercial
SiC particle reinforced DRA’s. The main mode of damage for the naturally aged xgaterial is found
to be particle cracking. Larger particles in particle rich regions are more susceptible to cracking
than those in particle sparse regions. Spatial distribution of particles plays a more important role
in damage than particle size for this material. A sensitivity analysis with respect to microstructural
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parameters infers that the strongest influence on particle cracking comes from the size and local
spatial distribution. Particle shape, orientation and nearest neighbor orientation have relatively
smaller effect on damage initiation. Histograms of particles forming the dominant damage path in
comparison with all cracked particles reveal that larger particles oriented in loading direction and in
relatively rich areas are more susceptible to contribute to a dominant crack in the microstructure.
In an attempt to identify discriminating characteristics of 2D micrographs that may be of helpful
in making dominant damage predictions for the actual 3D microstructures, probability density
functions of particle size nearest neighbor distance, and second order intensity function K (r) of
spatial distribution are plotted. Better representation of Zamage is possible with those sections
that have higher peaks at lower near neighbor distances and !onger tails, as well as have propensity
towards clustering.

Next the two dimensional Voronoi cell finite element model is used to simulate microstructural
damage evolution in computer generated equivalent micrographs. Both macroscopic and micro-
scopic variables obtained by the VCFEM simulation are compared with experimental observations.
The macroscopic stress-strain plot for the plane strain analysis is found to yield quite good match
with experiments if the difference in the initial yield strength due to plastic constraint is subtracted.
Prediction of the onset of plastic instability by the Considere criterion is also found to be in reason-
ably good agreement with the experimental results. For the microstructural results with number
of cracked particles in different size ranges, the Weibull model is found to give better concurrence
with experiments. A plot of the number fraction of cracked particles as a function of straining
shows that at lower strains sections with particle rich regions damage rapidly, but the rate slows
down with additional deformation. Finally, the marked correlation functions are evaluated to char-
acterize length scales and representative material element size in the presence of damage. Particle
cracks and the probability of particle fracture are chosen to be the marks. The study reveals that a
significantly large portion of the microstructure should be analyzed for reasonable accuracy in the
presence of damage. The correlation functions do not stabilize below a certain length scales and
this keeps growing with increased damage. In summary, various important characteristics of grow-
ing damage are investigated in this work to understand the role of microstructure in the material

failure process.
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Figure 5.4: Sensitivity of damage to various microstructural variables
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Figure 5.5: Histograms comparing characteristics of particles with dominant damage with all

cracked particles
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Figure 5.6: Characterization functions for 2D sections and 3D-microstructure.

133




800.0 T r -

7000 + 5

i

o !

i :

& 4

E .

2 :

4 -
s
-
w
H

c 1

= _ ) _

O O X2080-T4 matrix 4 '

——@ experimental result -

3 - - modified plane strain VCFEM result :

o- — © plane strain VCFEM resuit !

& - - plane stress VCFEM result -

"0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
True strain

(a)

4500.0 T

stress in matrix
4000.0 + ——— strass in composite (expenment)
— — stress in composite (simulation)
i Q O © hardening rate in matrix
3500.0 - a—n hardening rate in composite (expenment)
| O~ —O hardening rate in composite (simulation)

3000.0 + '

D SO

2500.0

[ S SR SNV S

2000.0

1500.0

1000.0

Stress & strain hardening rate (MPa)

500.0

0.0 e
000 002 004 006 008 010 012 014 016 018 020

Plastic strain

(b)

Figure 5.7: (a) Macroscopic stress-strain response by plane strain and plane stress VCFEM simu-
lation, (b) Stress-strain hardening rate plots for the Considere condition.
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Figure 5.8: (a) Experimental micrographs, (b) VCFEM simulated micrograph showing damage and
contour plot of effective plastic strain at 8.88% strain in section 1, (c) histogram of number fraction
of cracked particles as a function of particle size by Weibull based probabilistic criterion, and (d)
contour plot of particle fracture probability of section 1 at 8.88% strain.
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Figure 5.9: Number fraction of cracked particles as a function of straining.
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Figure 5.10: Simulations showing effective plastic strain(%) and cracked particles in three different
subsets of the entire micrograph of section 1, (a) RME 0 with dimension 195um x #55um (b) RME
1 with dimension 150um x 155um and (c) RME 2 with dimension 116umz115um.
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Figure 5.11: Marked correlation function as a function of radial distance; (a) cracked particles as
marks and (b) probability of cracking as makr for RME 0: (c) cracked particles as marks and (d)
probability of cracking as makr for RME 1; (e) cracked particles as marks and. (f) probability of

cracking as makr for RME 2.
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